CMPS 6610 Algorithms - Fall 2018

Greedy Algorithms: Knapsack Problem Carola Wenk

Greedy Strategy

1. Repeatedly identify a decision to be made (\rightarrow recursion)
2. Make a locally optimal choice for each decision

In order to reach a globally optimal solution, the problem must have appropriate recursive substructure:
optimal solution = locally optimal choice

+ optimal solution for the remainder of the problem

Knapsack Problem

- Given a knapsack with weight capacity $W>0$, and given n items of positive integer weights w_{1}, \ldots, w_{n} and positive integer values v_{1}, \ldots, v_{n}. (So, item i has value v_{i} and weight w_{i}.)
- 0-1 Knapsack Problem: Compute a subset of items that maximize the total value (sum), and they all fit into the knapsack (total weight at most W).
- Fractional Knapsack Problem: Same as before but we are allowed to take fractions of items (\rightarrow gold dust).

Greedy Knapsack

- Greedy Strategy:
- Compute $\frac{v_{i}}{w_{i}}$ for each i
- Greedily take as much as possible of the item with the highest value/weight. Then repeat/recurse.
\Rightarrow Sort items by value/weight
$\Rightarrow O(n \log n)$ runtime

Knapsack Example

item
value
weight
value/weight

$12 \quad 15 \quad 4$
$\mathrm{W}=4$

- Greedy fractional: Take item 1 and $2 / 3$ of item 2
\Rightarrow weight $=4$, value $=12+2 / 3 \cdot 15=12+10=22$
- Greedy 0-1: Take item 1 and then item 3
\Rightarrow weight $=1+2=3$, value $=12+4=16$

```
greedy 0-1
# optimal 0-1
```

- Optimal 0-1: Take items 2 and 3, value $=19$

Optimal Substructure

- Let s_{1}, \ldots, s_{n} be an optimal solution, where $s_{i}=$ amount of item i that is taken; $0 \leq s_{i} \leq 1$
- Suppose we remove one item. $\rightarrow n-1$ items left
- Is the remaining "solution" still an optimal solution for $n-1$ items?
- Yes; cut-and-paste.

Correctness Proof for Greedy

- Suppose items $1, \ldots, n$ are numbered in decreasing order by value/weight.
- Greedy solution G: Takes all elements $1, \ldots, j, \ldots, i^{*}-1$ and a fraction of i^{*}.
- Assume optimal solution S is different from G. Assume S takes only a fraction $\frac{1}{a}$ of item j, for $j \leq i^{*}-1$.
- Create new solution S^{\prime} from S by taking $w_{j}-1 / a$ weight away from items $>j$, and add $w_{j}-1 / a$ of item j back in. Hence, all of item j is taken.
\Rightarrow New solution S^{\prime} has the same weight but increased value.
This contradicts the assumption that S was optimal.
$\Rightarrow \mathrm{S}=\mathrm{G}$.

General Solution: DP

- $D[i, w]=$ max value possible for taking a subset of items $1, \ldots, i$ with knapsack constraint w.
- $D[0, w]=D[i, 0]=0$ for all $0 \leq i \leq n$ and $0 \leq w \leq W$ $D[i, w]=-\infty$ for $w<0$ $D[i, w]=\max (\underbrace{D[i-1, w]}_{\text {don't take item i }}, \underbrace{v_{i}+D\left[i-1, w-w_{i}\right]}_{\text {take item i }})$
- Compute $D[n, W]$ by filling an $n \times W$ DP-table. \Rightarrow Two nested for-loops, runtime and space $\Theta(n W)$
- Trace back from $D[n, W]$ by redoing computation or following arrows. $\Rightarrow \Theta(n+W)$ runtime

DP Example

Solution:
Take items 3 and 2
W=4
item

1	2	3
12	15	4
2	3	1
6	5	4

Take item i:

$\mathrm{W}=4$	0	12	15	19
	3	0	12	15^{2}

Don't take item i: \leftarrow

$$
D[i, w]=\underbrace{\max \left(D[i-1, w], v_{i}+D\left[i-1, w-w_{i}\right]\right)}_{\text {don't take item } \mathrm{i}}
$$

