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Greedy Strategy
1. Repeatedly identify a decision to be made (

recursion)

2. Make a locally optimal choice for each decision

In order to reach a globally optimal solution, the 
problem must have appropriate recursive substructure:

optimal solution = locally optimal choice
+ optimal solution for the remainder

of the problem
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Knapsack Problem
• Given a knapsack with weight capacity , and 
given items of positive integer weights ଵ ௡
and positive integer values ଵ ௡. 
(So, item has value ௜ and weight ௜.)

• 0-1 Knapsack Problem: Compute a subset of items 
that maximize the total value (sum), and they all fit 
into the knapsack (total weight at most W).

• Fractional Knapsack Problem: Same as before but 
we are allowed to take fractions of items ( gold 
dust).
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Greedy Knapsack
• Greedy Strategy:

– Compute ௩೔
௪೔

for each 

– Greedily take as much as possible of the item 
with the highest value/weight. Then 
repeat/recurse.

 Sort items by value/weight

 runtime
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Knapsack Example
item 1 2 3
value 12 15 4                W=4
weight 2 3 1
value/weight 6 5 4

• Greedy fractional: Take item 1 and 2/3 of item 2
 weight=4, value=12+2/315 = 12+10 = 22

• Greedy 0-1: Take item 1 and then item 3
 weight = 1+2=3, value=12+4=16

• Optimal 0-1: Take items 2 and 3, value =19

greedy 0-1 
≠ optimal 0-1
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Optimal Substructure
• Let ଵ ௡ be an optimal solution, where ௜ = 
amount of item that is taken; ௜

• Suppose we remove one item.  items left

• Is the remaining “solution” still an optimal solution 
for items?

• Yes; cut-and-paste.
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Correctness Proof for Greedy
• Suppose items are numbered in decreasing order by 
value/weight.

• Greedy solution G: Takes all elements ∗-1 and a 
fraction of ∗.

• Assume optimal solution S is different from G. Assume S takes 
only a fraction ଵ

௔
of item , for ∗-1.

• Create new solution S’ from S by taking ௝ weight 
away from items , and add ௝ of item back in. 
Hence, all of item is taken.

 New solution S’ has the same weight but increased value. 
This contradicts the assumption that S was optimal. 
 S=G.
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General Solution: DP
• = max value possible for taking a subset of items 

with knapsack constraint .

• for all and 
for 

௜ ௜

• Compute by filling an DP-table.
 Two nested for-loops, runtime and space 

• Trace back from by redoing computation or following 
arrows.  runtime 

don’t take item i take item i
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DP Example
W=4
item 1 2 3
value 12 15 4
weight 2 3 1
value/weight 6 5 4

4 0 12 15 19
3 0 12 15 16
2 0 12 12 12
1 0 0 0 4
0 0 0 0 0

0 1 2 3

don’t take item i take item i

 i

w


W=

n

Solution:
Take items 3 and 2 

Take item i:

Don’t take item i:

௜ ௜


