
CMPS 6610 Algorithms 1

CMPS 6610 Algorithms – Fall 2018

Greedy Algorithms:
Knapsack Problem

Carola Wenk

CMPS 6610 Algorithms 2

Greedy Strategy
1. Repeatedly identify a decision to be made (

recursion)

2. Make a locally optimal choice for each decision

In order to reach a globally optimal solution, the
problem must have appropriate recursive substructure:

optimal solution = locally optimal choice
+ optimal solution for the remainder

of the problem

CMPS 6610 Algorithms 3

Knapsack Problem
• Given a knapsack with weight capacity , and
given items of positive integer weights ଵ ௡
and positive integer values ଵ ௡.
(So, item has value ௜ and weight ௜.)

• 0-1 Knapsack Problem: Compute a subset of items
that maximize the total value (sum), and they all fit
into the knapsack (total weight at most W).

• Fractional Knapsack Problem: Same as before but
we are allowed to take fractions of items ( gold
dust).

CMPS 6610 Algorithms 4

Greedy Knapsack
• Greedy Strategy:

– Compute ௩೔
௪೔

for each

– Greedily take as much as possible of the item
with the highest value/weight. Then
repeat/recurse.

 Sort items by value/weight

 runtime

CMPS 6610 Algorithms 5

Knapsack Example
item 1 2 3
value 12 15 4 W=4
weight 2 3 1
value/weight 6 5 4

• Greedy fractional: Take item 1 and 2/3 of item 2
 weight=4, value=12+2/315 = 12+10 = 22

• Greedy 0-1: Take item 1 and then item 3
 weight = 1+2=3, value=12+4=16

• Optimal 0-1: Take items 2 and 3, value =19

greedy 0-1
≠ optimal 0-1

CMPS 6610 Algorithms 6

Optimal Substructure
• Let ଵ ௡ be an optimal solution, where ௜ =
amount of item that is taken; ௜

• Suppose we remove one item.  items left

• Is the remaining “solution” still an optimal solution
for items?

• Yes; cut-and-paste.

CMPS 6610 Algorithms 7

Correctness Proof for Greedy
• Suppose items are numbered in decreasing order by
value/weight.

• Greedy solution G: Takes all elements ∗-1 and a
fraction of ∗.

• Assume optimal solution S is different from G. Assume S takes
only a fraction ଵ

௔
of item , for ∗-1.

• Create new solution S’ from S by taking ௝ weight
away from items , and add ௝ of item back in.
Hence, all of item is taken.

 New solution S’ has the same weight but increased value.
This contradicts the assumption that S was optimal.
 S=G.

CMPS 6610 Algorithms 8

General Solution: DP
• = max value possible for taking a subset of items

with knapsack constraint .

• for all and
for

௜ ௜

• Compute by filling an DP-table.
 Two nested for-loops, runtime and space

• Trace back from by redoing computation or following
arrows.  runtime

don’t take item i take item i

CMPS 6610 Algorithms 9

DP Example
W=4
item 1 2 3
value 12 15 4
weight 2 3 1
value/weight 6 5 4

4 0 12 15 19
3 0 12 15 16
2 0 12 12 12
1 0 0 0 4
0 0 0 0 0

0 1 2 3

don’t take item i take item i

 i

w


W=

n

Solution:
Take items 3 and 2

Take item i:

Don’t take item i:

௜ ௜

