CMPS 6610 Algorithms — Fall 2018

Greedy Algorithms:
Knapsack Problem
Carola Wenk

CMPS 6610 Algorithms

Greedy Strategy

1. Repeatedly identify a decision to be made (—
recursion)

2. Make a locally optimal choice for each decision

In order to reach a globally optimal solution, the
problem must have appropriate recursive substructure:

optimal solution = locally optimal choice
+ optimal solution for the remainder
of the problem

CMPS 6610 Algorithms 2

Knapsack Problem

* Given a knapsack with weight capacity I/ > 0, and
given n 1tems of positive integer weights wy, ..., w,
and positive integer values v4, ..., Uy,.

(So, item i has value v; and weight w;.)

 0-1 Knapsack Problem: Compute a subset of 1tems
that maximize the total value (sum), and they all fit
into the knapsack (total weight at most W).

* Fractional Knapsack Problem: Same as before but
we are allowed to take fractions of items (— gold

dust).

CMPS 6610 Algorithms 3

Greedy Knapsack
* Greedy Strategy:

— Compute — - for each i
l

— @Greedily take as much as possible of the item
with the highest value/weight. Then
repeat/recurse.

—> Sort 1tems by value/weight

— (O(nlogn) runtime

CMPS 6610 Algorithms

Knapsack Example

1tem | 2 3
value 12 15 4 =4
welight 2 3 1

value/weight 6 5 4

* Greedy fractional: Take item | and 2/3 of item 2
= weight=4, value=12+2/3-15=12+10 =22

* Greedy 0-1: Take item | and then item 3

= weight = 142=3, value=12+4=16 greedy 0-1

#+ optimal 0-1

e Optimal 0-1: Take items 2 and 3, value =19

CMPS 6610 Algorithms 5

Optimal Substructure

* Let 54, ..., S, be an optimal solution, where s; =
amount of item [that 1s taken; 0 < s5; < 1

* Suppose we remove one item. — n — 1 items left

* [s the remaining “solution” still an optimal solution
for n — 1 items?

* Yes; cut-and-paste.

CMPS 6610 Algorithms

Correctness Proof for Greedy

e Suppose items 1, ..., n are numbered in decreasing order by
value/weight.

» Greedy solution G: Takes all elements 1, ...,/,...,i"-1 and a
fraction of i ™.

» Assume optimal solution S 1s different from G. Assume S takes

only a fraction % of item J, for j < i"-1.

* Create new solution S’ from S by taking w; — 1/a weight
away from items > j, and add w; — 1/a of item j back 1n.
Hence, all of item j 1s taken.

—> New solution S’ has the same weight but increased value.
This contradicts the assumption that S was optimal.
= S=G. []

CMPS 6610 Algorithms 7

General Solution: DP

* D|i, w| = max value possible for taking a subset of items
1, ..., I with knapsack constraint w.

e D|0O,w] =D|i,0] =0forall0 <i<nand0<w<W
D|i,w] = —co forw < 0
Dli,w] =max(D|i — 1,w],v; + D[i — 1,w — w;])

J \ J
| |

don’t take item 1 take 1item 1

« Compute D|n, W | by filling an n X I/ DP-table.
— Two nested for-loops, runtime and space O (nlV/)

* Trace back from D|n, W] by redoing computation or following
arrows. = O(n + W) runtime

CMPS 6610 Algorithms 8

DP Example Solution: [~ /

Take items 3 and 2

W
W=4 !
W= w=4 [0]12]15 |19
1telm 23 31012157 16
value 1215 4 2 [ol12f12] 12
weight 2 3 1 110 oj 0| 4
value/weight 6 5 4 0100 0] 0
Take item i: /4 01T 2 3 i

A / n

y

Don’t take item 1:; L<—

Dli,w] = max(D[i — 1,w|,v; + D[i — 1,w — w;])

I |

don’t take item 1 take item 1

CMPS 6610 Algorithms 9

