CMPS 6610 - Fall 2018

Dynamic Programming
 Carola Wenk

Slides by Carola Wenk, based on slides by Charles Leiserson

Dynamic programming

- Algorithm design technique
- A technique for solving problems that have

1. an optimal substructure property (recursion)
2. overlapping subproblems

- Idea: Do not repeatedly solve the same subproblems, but solve them only once and store the solutions in a dynamic programming table

Example: Fibonacci numbers

- $\mathrm{F}(0)=0 ; \mathrm{F}(1)=1 ; \mathrm{F}(n)=\mathrm{F}(n-1)+\mathrm{F}(n-2)$ for $n \geq 2$
$0,1,1,2,3,5,8,13,21,34,55,89, \ldots$
Dynamic-programming hallmark \#1
Optimal substructure
An optimal solution to a problem
(instance) contains optimal solutions to subproblems.

Recursion

Example: Fibonacci numbers

- $\mathrm{F}(0)=0 ; \mathrm{F}(1)=1 ; \mathrm{F}(n)=\mathrm{F}(n-1)+\mathrm{F}(n-2)$ for $n \geq 2$
- Implement this recursion directly:

- Runtime is exponential: $2^{n / 2} \leq T(n) \leq 2^{n}$
- But we are repeatedly solving the same subproblems

Dynamic-programming hallmark \#2

Overlapping subproblems A recursive solution contains a "small" number of distinct subproblems repeated many times.

The number of distinct Fibonacci subproblems is only n.

Dynamic-programming

There are two variants of dynamic programming:

1. Bottom-up dynamic programming (often referred to as "dynamic programming")
2. Memoization

Bottom-up dynamicprogramming algorithm

- Store 1D DP-table and fill bottom-up:


```
F[0]}\leftarrow
    F[1]}\leftarrow
    for (i\leftarrow2,i\leqn,i++)
        F[i]}\leftarrow\textrm{F}[\textrm{i}-1]+\textrm{F}[\textrm{i}-2
```

 return \(\mathrm{F}[\mathrm{n}]\)
 - Time $=\Theta(n)$, space $=\Theta(n)$

Memoization algorithm

Memoization: Use recursive algorithm. After computing a solution to a subproblem, store it in a table.
Subsequent calls check the table to avoid redoing work. fibMemoization (n)
for all i : $\mathrm{F}[i]=$ null
fibMemoizationRec $(n, \mathrm{~F})$
return $\mathrm{F}[n]$
fibMemoizationRec $(n, \mathrm{~F})$
if ($\mathrm{F}[n]=$ null)
if $(n=0) \mathrm{F}[n] \leftarrow 0$
if $(n=1) \mathrm{F}[n] \leftarrow 1$
$\mathrm{F}[\mathrm{n}] \leftarrow$ fibMemoizationRec(n-1,F)

+ fibMemoizationRec(n-2,F)
return $\mathrm{F}[\mathrm{n}]$
- Time $=\Theta(n)$, space $=\Theta(n)$

Longest Common Subsequence

Example: Longest Common Subsequence (LCS)

- Given two sequences $x[1 \ldots m]$ and $y[1 \ldots n]$, find a longest subsequence common to them both. "a" not "the"

Brute-force LCS algorithm

Check every subsequence of $x[1 \ldots m]$ to see if it is also a subsequence of $y[1 \ldots n]$.

Analysis

- 2^{m} subsequences of x (each bit-vector of length m determines a distinct subsequence of x).
- Hence, the runtime would be exponential !

Towards a better algorithm

Two-Step Approach:

1. Look at the length of a longest-common subsequence.
2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s by $|s|$.

Strategy: Consider prefixes of x and y.

- Define $c[i, j]=|\operatorname{LCS}(x[1 \ldots i], y[1 \ldots j])|$.
- Then, $c[m, n]=|\operatorname{LCS}(x, y)|$.

Recursive formulation

Theorem. Longest common subsequence

$$
c[i, j]= \begin{cases}0 & , \text { if } i=0 \text { or } j=0 \\ c[i-1, j-1]+1 & , \text { if } i, j>0 \text { and } x[i]=y[j] \\ \max \{c[i-1, j], c[i, j-1]\}, & \text { otherwise }\end{cases}
$$

Proof. Case $x[i]=y[j]$:

Let $z[1 \ldots k]=\operatorname{LCS}(x[1 \ldots i], y[1 \ldots j])$, where $c[i, j]=k$. Then, $z[k]=x[i]$, or else z could be extended. Thus, $z[1 \ldots$ $k-1]$ is CS of $x[1 \ldots i-1]$ and $y[1 \ldots j-1]$.

Proof (continued)

Claim: $z[1 \ldots k-1]=\operatorname{LCS}(x[1 \ldots i-1], y[1 \ldots j-1])$. Suppose w is a longer CS of $x[1 \ldots i-1]$ and $y[1 \ldots j-1]$, that is, $|w|>k-1$.
Then, cut and paste: $w \| z[k]$ (w concatenated with $z[k]$) is a common subsequence of $x[1 \ldots i]$ and $y[1 \ldots j]$ with $|w||z[k]|>k$. Contradiction, proving the claim.

Thus, $c[i-1, j-1]=k-1$, which implies that $c[i, j]=c[i-1$, $j-1]+1$.
Other cases are similar.

Dynamic-programming hallmark \#1

Optimal substructure
 An optimal solution to a problem
 (instance) contains optimal solutions to subproblems.

Recursion
If $z=\operatorname{LCS}(x, y)$, then any prefix of z is an LCS of a prefix of x and a prefix of y.

Recursive algorithm for LCS

$\operatorname{LCS}(x, y, i, j)$ if $(i=0$ or $j=0)$

$$
c[i, j] \leftarrow 0
$$

else if $x[i]=y[j]$

$$
c[i, j] \leftarrow \operatorname{LCS}(x, y, i-1, j-1)+1
$$

else $c[i, j] \leftarrow \max \{\operatorname{LCS}(x, y, i-1, j)$,
$\operatorname{LCS}(x, y, i, j-1)\}$
return $c[i, j]$
Worst-case: $x[i] \neq y[j]$, in which case the algorithm evaluates two subproblems, each with only one parameter decremented.

Recursion tree (worst case)

Height $=m+n \Rightarrow$ work potentially exponential, but we're solving subproblems already solved!

Dynamic-programming hallmark \#2

> Overlapping subproblems A recursive solution contains a "small" number of distinct subproblems repeated many times.

The distinct LCS subproblems are all the pairs (i, j). The number of such pairs for two strings of lengths m and n is only $m n$.

Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

LCS_mem (x, y, i, j)

$$
\text { if } c[i, j]=\text { null }
$$

$$
\begin{array}{r}
\text { if }(i=0 \text { or } j=0) \\
c[i, j] \leftarrow 0
\end{array}
$$

$$
\text { else if } x[i]=y[j]
$$

$$
c[i, j] \leftarrow \text { LCS_mem }(x, y, i-1, j-1)+1
$$

$$
\text { else } c[i, j] \leftarrow \text { max }\{\text { LCS_mem }(x, y, i-1, j),
$$

$$
\text { LCS_mem }(x, y, i, j-1)\}
$$

return $c[i, j]$
Space $=$ time $=\Theta(m n)$; constant work per table entry.

Recursive formulation

$$
c[i, j]= \begin{cases}0 & , \text { if } i=0 \text { or } j=0 \\ c[i-1, j-1]+1 & \text {, } f, i, \gg 0 \text { and } x[i]=y[j] \\ \max \{c[i-1, j], c[i, j-1]\}, & \text { otherwise }\end{cases}
$$

c :

Bottom-up dynamicprogramming algorithm

IDEA:

Compute the table bottom-up.
Time $=\Theta(m n)$.
Space $=\Theta(m n)$.

Bottom-up DP

LCS_bottomUp $(x[1 . . m], y[1 . . n])$

```
for \((i=0 ; i \leq m ; i++) \mathrm{c}[i, 0]=0\);
for \((j=0 ; j \leq n ; j++) c[0, j]=0\);
for \((j=1 ; j \leq n ; j++)\)
    for \((i=1 ; i \leq m ; i++)\)
        if \(x[i]=y[j]\{\)
        \(c[i, j] \leftarrow c[i-1, j-1]+1\)
        arrow \([i, j]=\) "diagonal";
    \} else \(\{/ /\) compute max
        if \((c[i-1, j] \geq c[i, j-1])\{\)
        \(c[i, j] \leftarrow c[i-1, j]\)
        arrow \([i, j]=" l e f t "\);
        \} else \{
        \(c[i, j] \leftarrow c[i, j-l]\)
        arrow \([i, j]=" u p " ;\)
        \}
    return c and arrow
```

Space $=$ time $=\Theta(m n) ;$
constant work per table entry.

Reconstruct LCS by backtracking

Reducing space

- We can compute the length of an LCS in $\Theta(m n)$ time using only $\Theta(\min \{m, n\})$ space by filling the table row-by-row and only keeping two rows (or column-by-column if columns are shorter). (Exercise: use only $\min \{m, n\}+\Theta(1)$ space.)
- However, without the whole DP table we cannot construct an LCS.
- Hirschberg's algorithm combines DP with divide-and-conquer to construct an LCS in $\Theta(m n)$ time using only $\Theta(\min \{m, n\})$ space

Two recursive formulas

Consider prefixes of x and y.

- Define $c[i, j]=|\operatorname{LCS}(x[1 \ldots i], y[1 \ldots j])|$.
- Then, $c[m, n]=|\operatorname{LCS}(x, y)|$.

$$
c[i, j]= \begin{cases}0 & , \text { if } i=0 \text { or } j=0 \\ c[i-1, j-1]+1 & , \text { if } i, j>0 \text { and } x[i]=y[j] \\ \max \{c[i-1, j], c[i, j-1]\} & , \text { otherwise }\end{cases}
$$

Equivalently, we can consider suffixes of x and y.

- Define $c^{\prime}[i, j]=|\operatorname{LCS}(x[i \ldots m], y[j \ldots n])|$.
- Then, $c^{\prime}[1,1]=|\operatorname{LCS}(x, y)|$.
$c^{\prime}[i, j]= \begin{cases}0 & , \text { if } i=m+1 \text { or } j=n+1 \\ c^{\prime}[i+1, j+1]+1 & , \text { if } i \leq m, j \leq n \text { and } x[i]=y[j]\end{cases}$ $\max \left\{c^{\prime}[i+1, j], c^{\prime}[i, j+1]\right\}$, otherwise

Hirschberg's D\&C

- Without loss of generality assume $n \leq m$.
- Idea: Use divide-and-conquer on string x.
- Let z be an LCS for x and y, and consider the correspondence of matching characters between x and y described by z.
- Let $y[k]$ be the rightmost character in y that corresponds to a character in $x\left[1\right.$.. $\left.\left.\left\lvert\, \frac{m}{2}\right.\right]\right]$

Hirschberg's D\&C

- Let $y[k]$ be the rightmost character in y that corresponds to a character in $x\left[1 . .\left[\frac{m}{2}\right]\right]$; or 0 if no such character exists.

- Then:
$|\operatorname{LCS}(x, y)|=\max _{0 \leq \leq n}\left\{\mathrm{c}\left[\left\lfloor\frac{m}{2}\right], l\right]+\mathrm{c}^{\prime}\left[\left[\frac{m}{2}\right]+1, l+1\right]\right\}$

Algorithm

$$
|\operatorname{LCS}(x, y)|=\max _{0 \leq l \leq n}\left\{\mathrm{c}\left[\left[\frac{m}{2}\right], l\right]+\mathrm{c}^{\prime}\left[\left[\frac{m}{2}\right]+1, l+1\right]\right\}
$$

1. Find $k=\arg \max _{0 \leq \leq \leq n}\left\{c\left[\left\lfloor\frac{m}{2}\right], l\right]+\mathrm{c}^{\prime}\left[\left[\frac{m}{2}\right]+1, l+1\right]\right\}$
2. Recursively compute $\left.z_{1}=\operatorname{LCS}\left(x\left[1 . . \left\lvert\, \frac{m}{2}\right.\right]\right], y[1 . . k]\right)$ and $z_{2}=\operatorname{LCS}\left(x\left[\left[\frac{m}{2}\right]+1 . . m\right], \mathrm{y}[k+1 . . n]\right)$, and return the concatenation $z=z_{1} z_{2}$

Step 1: Compute $c\left[\left[\frac{m}{2}\right], l\right]$ and $c^{\prime}\left[\left[\frac{m}{2}\right]+1, l+1\right]$ for all $0 \leq l \leq n$.

This can be done in $\mathrm{O}(m n)$ time and $\mathrm{O}(n)$ space, using standard DP without storing the whole table.

Runtime analysis

In the root of the recursion tree the runtime is cmn . The total work in each subsequent level is half:

Therefore the total runtime is at most:

$$
c m n \sum_{i=0}^{\infty}\left(\frac{1}{2}\right)^{i} \in O(m n)
$$

The total space needed is only the space of $\mathrm{O}(n)$ used within each recursive call.

