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Dynamic Programming
Carola Wenk

Slides by Carola Wenk, based on slides by Charles Leiserson
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Dynamic programming

• Algorithm design technique 

• A technique for solving problems that have

1. an optimal substructure property (recursion)

2. overlapping subproblems

• Idea: Do not repeatedly solve the same subproblems, 
but solve them only once and store the solutions in a 
dynamic programming table



9/28/18 CMPS 6610 Algorithms 3

Example: Fibonacci numbers

• F(0)=0; F(1)=1; F(n)=F(n-1)+F(n-2) for n  2

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

Dynamic-programming hallmark #1

Optimal substructure
An optimal solution to a problem 

(instance) contains optimal 
solutions to subproblems.

Recursion
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Example: Fibonacci numbers

• F(0)=0; F(1)=1; F(n)=F(n-1)+F(n-2) for n  2

• Implement this recursion directly:

F(n)
F(n-1) F(n-2)

F(n-2) F(n-3) F(n-3) F(n-4)

F(n-3) F(n-4)F(n-4) F(n-5) F(n-4) F(n-5)F(n-5) F(n-6)

same 
subproblem

n n/2

• Runtime is exponential: 2n/2 ≤ T(n) ≤ 2n

• But we are repeatedly solving the same subproblems
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Dynamic-programming 
hallmark #2

Overlapping subproblems
A recursive solution contains a 

“small” number of distinct 
subproblems repeated many times.

The number of distinct Fibonacci 
subproblems is only n.
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Dynamic-programming

There are two variants of dynamic 
programming:

1. Bottom-up dynamic programming
(often referred to as “dynamic 
programming”)

2. Memoization
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Bottom-up dynamic-
programming algorithm

fibBottomUpDP(n)
F[0]  0
F[1]  1
for (i 2, i≤ n, i++)

F[i] F[i-1]+F[i-2]

return F[n]

• Store 1D DP-table and fill bottom-up:

F: 0 1 1 2 3 5 8

• Time = Q(n), space = Q(n)

7CMPS 6610 Algorithms
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Memoization algorithm
Memoization:  Use recursive algorithm. After computing 
a solution to a subproblem, store it in a table.  
Subsequent calls check the table to avoid redoing work.

fibMemoizationRec(n,F)
if (F[n]= null)

if (n=0) F[n] 0
if (n=1) F[n] 1
F[n] fibMemoizationRec(n-1,F)

+ fibMemoizationRec(n-2,F)
return F[n]

• Time = Q(n), space = Q(n)

fibMemoization(n)
for all i: F[i] = null
fibMemoizationRec(n,F)
return F[n]
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Longest Common Subsequence 

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find 

a longest subsequence common to them both.

x: A B C B D A B

y: B D C A B A

“a” not “the”

BCBA = 
LCS(x, y)

functional notation, 
but not a function
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Brute-force LCS algorithm

Check every subsequence of x[1 . . m] to see 
if it is also a subsequence of y[1 . . n].

Analysis
• 2m subsequences of x (each bit-vector of 

length m determines a distinct subsequence 
of x).

• Hence, the runtime would be exponential !
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Towards a better algorithm
Two-Step Approach:
1. Look at the length of a longest-common 

subsequence.  
2. Extend the algorithm to find the LCS itself.

Strategy: Consider prefixes of x and y.
• Define c[i, j] = | LCS(x[1 . . i], y[1 . . j]) |.
• Then, c[m, n] = | LCS(x, y) |.

Notation: Denote the length of a sequence s
by | s |.
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Recursive formulation
Theorem.

c[i, j] =
0 , if i=0 or j=0
c[i–1, j–1] + 1 , if i,j>0 and x[i] = y[j]

max{c[i–1, j], c[i, j–1]}, otherwise

Let z[1 . . k] = LCS(x[1 . . i], y[1 . . j]), where c[i, j] = k.  
Then, z[k] = x[i], or else z could be extended.  Thus, z[1 . . 
k–1] is CS of x[1 . . i–1] and y[1 . . j–1].

Proof.  Case x[i] = y[ j]:

...
1 2 i m

...
1 2 j n

x:

y:
=

Longest common subsequence

max
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Proof (continued)

Claim: z[1 . . k–1] = LCS(x[1 . . i–1], y[1 . . j–1]). 
Suppose w is a longer CS of x[1 . . i–1] and y[1 . . j–1], 
that is, | w | > k–1.  
Then, cut and paste: w || z[k] (w concatenated with z[k]) 
is a common subsequence of x[1 . . i] and y[1 . . j] with 
| w || z[k] | > k. Contradiction, proving the claim.

Thus, c[i–1, j–1] = k–1, which implies that c[i, j] = c[i–1, 
j–1] + 1.

Other cases are similar.
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Dynamic-programming 
hallmark #1

Optimal substructure
An optimal solution to a problem 

(instance) contains optimal 
solutions to subproblems.

If z = LCS(x, y), then any prefix of z is 
an LCS of a prefix of x and a prefix of y.

Recursion



9/28/18 CMPS 6610 Algorithms 15

Recursive algorithm for LCS
LCS(x, y, i, j)

if (i=0 or j=0)
c[i, j]  0

else if x[i] = y[ j]
c[i, j]  LCS(x, y, i–1, j–1) + 1

else c[i, j]  max{LCS(x, y, i–1, j), 
LCS(x, y, i, j–1)}

return c[i, j] 

Worst-case: x[i]  y[ j], in which case the algorithm 
evaluates two subproblems, each with only one 
parameter decremented.
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same 
subproblem

,
but we’re solving subproblems already solved!

Recursion tree (worst case)

m = 3, n = 4: 3,4

2,4

1,4

3,3

3,22,3

1,3 2,2

Height = m + n work potentially exponential.

2,3

1,3 2,2

m+n
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Dynamic-programming 
hallmark #2

Overlapping subproblems
A recursive solution contains a 

“small” number of distinct 
subproblems repeated many times.

The distinct LCS subproblems are all the 
pairs (i,j). The number of such pairs for two 
strings of lengths m and n is only mn.
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Memoization algorithm
Memoization:  After computing a solution to a 
subproblem, store it in a table.  Subsequent calls check 
the table to avoid redoing work.

Space = time = Q(mn); constant work per table entry.

same 
as 
before

LCS_mem(x, y, i, j)
if c[i, j] = null

if (i=0 or j=0)
c[i, j]  0

else if x[i] = y[ j]
c[i, j]  LCS_mem(x, y, i–1, j–1) + 1

else c[i, j]  max{LCS_mem (x, y, i–1, j), 
LCS_mem (x, y, i, j–1)}

return c[i, j] 
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Recursive formulation

c:

c[i,j]

i

j

j-1

i-1

c[i, j] =
0 , if i=0 or j=0
c[i–1, j–1] + 1 , if i,j>0 and x[i] = y[j]

max{c[i–1, j], c[i, j–1]}, otherwise
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0 0 0 0 0

0 0 1 1 1

0

1

0

1

0

1

0 0 1 1 1 2 2 2D

0 0 1 2 2 2 2C 2

0 1 1 2 2 2 3 3A

0 1 2 2 3 3 3B 4

0 1 2 2 3

A

Bottom-up dynamic-
programming algorithm

IDEA:
Compute the 
table bottom-up.

A B C B D B

B

A 3 4

Time = Q(mn).
Space = Q(mn).

4

xy
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Bottom-up DP

Space = time = Q(mn); 
constant work per table 
entry.

LCS_bottomUp(x[1..m], y[1..n])
for (i=0; i≤m; i++) c[i,0]=0;
for (j=0; j≤n; j++) c[0,j]=0;
for (j=1; j≤n; j++) 

for (i=1; i≤m; i++) 
if x[i] = y[ j] {

c[i, j]  c[i-1, j-1]+1
arrow[i,j]=“diagonal”;

} else { // compute max
if (c[i-1, j]≥ c[i, j-1]){

c[i, j]  c[i-1, j]
arrow[i,j]=“left”;

} else{
c[i, j]  c[i, j-1]
arrow[i,j]=“up”;

}
}

return c and arrow
CMPS 6610 Algorithms
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AA B C B D B

D

C

A

B

B

A

00
A
00

B
00

C
00

B

B
0

0 0 1 1 11

D

D
0

1

0

1

0

1

0 0 1 1 1 22

C

2 2

0 0 1 2 2 22

A

A

2 2

0 1 1 2 2 2 33

B

B

3

0 1 2 2 3 3 3 44

A 0 1 2 2 3

Reconstruct LCS by 
backtracking

3 4 44

xy
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Reducing space

• We can compute the length of an LCS in Q(mn)
time using only Q(min{m,n}) space by filling the 
table row-by-row and only keeping two rows (or 
column-by-column if columns are shorter).
(Exercise: use only min{m,n}+Q(1) space.)

• However, without the whole DP table we cannot 
construct an LCS.

• Hirschberg’s algorithm combines DP with divide-
and-conquer to construct an LCS in Q(mn) time 
using only Q(min{m,n}) space 
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Two recursive formulas

c[i, j] =
0 , if i=0 or j=0
c[i–1, j–1] + 1 , if i,j>0 and x[i] = y[j]
max{c[i–1, j], c[i, j–1]} , otherwise

c'[i, j] =
0 , if i=m+1 or j=n+1
c’[i+1, j+1] + 1 , if i≤m, j ≤ n and x[i] = y[j]
max{c’[i+1, j], c'[i, j+1]}, otherwise

Equivalently, we can consider suffixes of x and y.
• Define c'[i, j] = | LCS(x[i . . m], y[j . . n]) |.
• Then, c’[1,1] = | LCS(x, y) |.

Consider prefixes of x and y.
• Define c[i, j] = | LCS(x[1 . . i], y[1 . . j]) |.
• Then, c[m, n] = | LCS(x, y) |.
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Hirschberg’s D&C
• Without loss of generality assume n≤m. 
• Idea: Use divide-and-conquer on string x.
• Let z be an LCS for x and y, and consider the 

correspondence of matching characters between x 
and y described by z.

• Let y[k] be the rightmost character in y that 
corresponds to a character in x[1.. ]

1 2 m

1 2 k n

x:

y:

=

𝑚

2
+1

k+1
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Hirschberg’s D&C
• Let y[k] be the rightmost character in y that 

corresponds to a character in x[1.. ]; 
or 0 if no such character exists.

1 2 m

1 2 k n

x:

y:

=

𝑚

2
+1

k+1

• Then:
| LCS(x, y) |= max{c[ ,l]+c’[ +1,l+1]}

0≤l≤n
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Algorithm

0≤l≤n
1. Find k = arg max{c[ ,l]+c’[ +1,l+1]}

2. Recursively compute z1=LCS(x[1.. ], y[1..k]) and
z2=LCS(x[ +1 ..m], y[k+1..n]), and return the 
concatenation z = z1 z2

Step 1: Compute c[ ,l] and c’[ +1,l+1] for all 0≤l≤n.

𝑚

2
+1i

j

c c'

This can be done in O(mn) time
and O(n) space, using standard DP
without storing the whole table.
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Runtime analysis

In the root of the recursion tree the runtime is cmn. 
The total work in each subsequent level is half:

𝑚

2
+1i

j

k

Therefore the total runtime is at most: 

The total space needed is only the space of O(n) used 
within each recursive call. 


