
9/28/18 CMPS 6610 Algorithms 1

CMPS 6610 – Fall 2018

Dynamic Programming
Carola Wenk

Slides by Carola Wenk, based on slides by Charles Leiserson

9/28/18 CMPS 6610 Algorithms 2

Dynamic programming

• Algorithm design technique

• A technique for solving problems that have

1. an optimal substructure property (recursion)

2. overlapping subproblems

• Idea: Do not repeatedly solve the same subproblems,
but solve them only once and store the solutions in a
dynamic programming table

9/28/18 CMPS 6610 Algorithms 3

Example: Fibonacci numbers

• F(0)=0; F(1)=1; F(n)=F(n-1)+F(n-2) for n  2

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

Dynamic-programming hallmark #1

Optimal substructure
An optimal solution to a problem

(instance) contains optimal
solutions to subproblems.

Recursion

9/28/18 CMPS 6610 Algorithms 4

Example: Fibonacci numbers

• F(0)=0; F(1)=1; F(n)=F(n-1)+F(n-2) for n  2

• Implement this recursion directly:

F(n)
F(n-1) F(n-2)

F(n-2) F(n-3) F(n-3) F(n-4)

F(n-3) F(n-4)F(n-4) F(n-5) F(n-4) F(n-5)F(n-5) F(n-6)

same
subproblem

n n/2

• Runtime is exponential: 2n/2 ≤ T(n) ≤ 2n

• But we are repeatedly solving the same subproblems

9/28/18 CMPS 6610 Algorithms 5

Dynamic-programming
hallmark #2

Overlapping subproblems
A recursive solution contains a

“small” number of distinct
subproblems repeated many times.

The number of distinct Fibonacci
subproblems is only n.

9/28/18 CMPS 6610 Algorithms 6

Dynamic-programming

There are two variants of dynamic
programming:

1. Bottom-up dynamic programming
(often referred to as “dynamic
programming”)

2. Memoization

9/28/18

Bottom-up dynamic-
programming algorithm

fibBottomUpDP(n)
F[0]  0
F[1]  1
for (i 2, i≤ n, i++)

F[i] F[i-1]+F[i-2]

return F[n]

• Store 1D DP-table and fill bottom-up:

F: 0 1 1 2 3 5 8

• Time = Q(n), space = Q(n)

7CMPS 6610 Algorithms

9/28/18 CMPS 6610 Algorithms 8

Memoization algorithm
Memoization: Use recursive algorithm. After computing
a solution to a subproblem, store it in a table.
Subsequent calls check the table to avoid redoing work.

fibMemoizationRec(n,F)
if (F[n]= null)

if (n=0) F[n] 0
if (n=1) F[n] 1
F[n] fibMemoizationRec(n-1,F)

+ fibMemoizationRec(n-2,F)
return F[n]

• Time = Q(n), space = Q(n)

fibMemoization(n)
for all i: F[i] = null
fibMemoizationRec(n,F)
return F[n]

9/28/18 CMPS 6610 Algorithms 9

Longest Common Subsequence

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find

a longest subsequence common to them both.

x: A B C B D A B

y: B D C A B A

“a” not “the”

BCBA =
LCS(x, y)

functional notation,
but not a function

9/28/18 CMPS 6610 Algorithms 10

Brute-force LCS algorithm

Check every subsequence of x[1 . . m] to see
if it is also a subsequence of y[1 . . n].

Analysis
• 2m subsequences of x (each bit-vector of

length m determines a distinct subsequence
of x).

• Hence, the runtime would be exponential !

9/28/18 CMPS 6610 Algorithms 11

Towards a better algorithm
Two-Step Approach:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.

Strategy: Consider prefixes of x and y.
• Define c[i, j] = | LCS(x[1 . . i], y[1 . . j]) |.
• Then, c[m, n] = | LCS(x, y) |.

Notation: Denote the length of a sequence s
by | s |.

9/28/18 CMPS 6610 Algorithms 12

Recursive formulation
Theorem.

c[i, j] =
0 , if i=0 or j=0
c[i–1, j–1] + 1 , if i,j>0 and x[i] = y[j]

max{c[i–1, j], c[i, j–1]}, otherwise

Let z[1 . . k] = LCS(x[1 . . i], y[1 . . j]), where c[i, j] = k.
Then, z[k] = x[i], or else z could be extended. Thus, z[1 . .
k–1] is CS of x[1 . . i–1] and y[1 . . j–1].

Proof. Case x[i] = y[j]:

...
1 2 i m

...
1 2 j n

x:

y:
=

Longest common subsequence

max

9/28/18 CMPS 6610 Algorithms 13

Proof (continued)

Claim: z[1 . . k–1] = LCS(x[1 . . i–1], y[1 . . j–1]).
Suppose w is a longer CS of x[1 . . i–1] and y[1 . . j–1],
that is, | w | > k–1.
Then, cut and paste: w || z[k] (w concatenated with z[k])
is a common subsequence of x[1 . . i] and y[1 . . j] with
| w || z[k] | > k. Contradiction, proving the claim.

Thus, c[i–1, j–1] = k–1, which implies that c[i, j] = c[i–1,
j–1] + 1.

Other cases are similar.

9/28/18 CMPS 6610 Algorithms 14

Dynamic-programming
hallmark #1

Optimal substructure
An optimal solution to a problem

(instance) contains optimal
solutions to subproblems.

If z = LCS(x, y), then any prefix of z is
an LCS of a prefix of x and a prefix of y.

Recursion

9/28/18 CMPS 6610 Algorithms 15

Recursive algorithm for LCS
LCS(x, y, i, j)

if (i=0 or j=0)
c[i, j]  0

else if x[i] = y[j]
c[i, j]  LCS(x, y, i–1, j–1) + 1

else c[i, j]  max{LCS(x, y, i–1, j),
LCS(x, y, i, j–1)}

return c[i, j]

Worst-case: x[i]  y[j], in which case the algorithm
evaluates two subproblems, each with only one
parameter decremented.

9/28/18 CMPS 6610 Algorithms 16

same
subproblem

,
but we’re solving subproblems already solved!

Recursion tree (worst case)

m = 3, n = 4: 3,4

2,4

1,4

3,3

3,22,3

1,3 2,2

Height = m + n work potentially exponential.

2,3

1,3 2,2

m+n

9/28/18 CMPS 6610 Algorithms 17

Dynamic-programming
hallmark #2

Overlapping subproblems
A recursive solution contains a

“small” number of distinct
subproblems repeated many times.

The distinct LCS subproblems are all the
pairs (i,j). The number of such pairs for two
strings of lengths m and n is only mn.

9/28/18 CMPS 6610 Algorithms 18

Memoization algorithm
Memoization: After computing a solution to a
subproblem, store it in a table. Subsequent calls check
the table to avoid redoing work.

Space = time = Q(mn); constant work per table entry.

same
as
before

LCS_mem(x, y, i, j)
if c[i, j] = null

if (i=0 or j=0)
c[i, j]  0

else if x[i] = y[j]
c[i, j]  LCS_mem(x, y, i–1, j–1) + 1

else c[i, j]  max{LCS_mem (x, y, i–1, j),
LCS_mem (x, y, i, j–1)}

return c[i, j]

9/28/18 CMPS 6610 Algorithms 19

Recursive formulation

c:

c[i,j]

i

j

j-1

i-1

c[i, j] =
0 , if i=0 or j=0
c[i–1, j–1] + 1 , if i,j>0 and x[i] = y[j]

max{c[i–1, j], c[i, j–1]}, otherwise

9/28/18 CMPS 6610 Algorithms 20

0 0 0 0 0

0 0 1 1 1

0

1

0

1

0

1

0 0 1 1 1 2 2 2D

0 0 1 2 2 2 2C 2

0 1 1 2 2 2 3 3A

0 1 2 2 3 3 3B 4

0 1 2 2 3

A

Bottom-up dynamic-
programming algorithm

IDEA:
Compute the
table bottom-up.

A B C B D B

B

A 3 4

Time = Q(mn).
Space = Q(mn).

4

xy

9/28/18 21

Bottom-up DP

Space = time = Q(mn);
constant work per table
entry.

LCS_bottomUp(x[1..m], y[1..n])
for (i=0; i≤m; i++) c[i,0]=0;
for (j=0; j≤n; j++) c[0,j]=0;
for (j=1; j≤n; j++)

for (i=1; i≤m; i++)
if x[i] = y[j] {

c[i, j]  c[i-1, j-1]+1
arrow[i,j]=“diagonal”;

} else { // compute max
if (c[i-1, j]≥ c[i, j-1]){

c[i, j]  c[i-1, j]
arrow[i,j]=“left”;

} else{
c[i, j]  c[i, j-1]
arrow[i,j]=“up”;

}
}

return c and arrow
CMPS 6610 Algorithms

9/28/18 CMPS 6610 Algorithms 22

AA B C B D B

D

C

A

B

B

A

00
A
00

B
00

C
00

B

B
0

0 0 1 1 11

D

D
0

1

0

1

0

1

0 0 1 1 1 22

C

2 2

0 0 1 2 2 22

A

A

2 2

0 1 1 2 2 2 33

B

B

3

0 1 2 2 3 3 3 44

A 0 1 2 2 3

Reconstruct LCS by
backtracking

3 4 44

xy

9/28/18 CMPS 6610 Algorithms 23

Reducing space

• We can compute the length of an LCS in Q(mn)
time using only Q(min{m,n}) space by filling the
table row-by-row and only keeping two rows (or
column-by-column if columns are shorter).
(Exercise: use only min{m,n}+Q(1) space.)

• However, without the whole DP table we cannot
construct an LCS.

• Hirschberg’s algorithm combines DP with divide-
and-conquer to construct an LCS in Q(mn) time
using only Q(min{m,n}) space

9/28/18 CMPS 6610 Algorithms 24

Two recursive formulas

c[i, j] =
0 , if i=0 or j=0
c[i–1, j–1] + 1 , if i,j>0 and x[i] = y[j]
max{c[i–1, j], c[i, j–1]} , otherwise

c'[i, j] =
0 , if i=m+1 or j=n+1
c’[i+1, j+1] + 1 , if i≤m, j ≤ n and x[i] = y[j]
max{c’[i+1, j], c'[i, j+1]}, otherwise

Equivalently, we can consider suffixes of x and y.
• Define c'[i, j] = | LCS(x[i . . m], y[j . . n]) |.
• Then, c’[1,1] = | LCS(x, y) |.

Consider prefixes of x and y.
• Define c[i, j] = | LCS(x[1 . . i], y[1 . . j]) |.
• Then, c[m, n] = | LCS(x, y) |.

9/28/18 CMPS 6610 Algorithms 25

Hirschberg’s D&C
• Without loss of generality assume n≤m.
• Idea: Use divide-and-conquer on string x.
• Let z be an LCS for x and y, and consider the

correspondence of matching characters between x
and y described by z.

• Let y[k] be the rightmost character in y that
corresponds to a character in x[1.. ௠

ଶ
]

1 2 m

1 2 k n

x:

y:

=

𝑚

2

௠

ଶ
+1

k+1

9/28/18 CMPS 6610 Algorithms 26

Hirschberg’s D&C
• Let y[k] be the rightmost character in y that

corresponds to a character in x[1.. ௠

ଶ
];

or 0 if no such character exists.

1 2 m

1 2 k n

x:

y:

=

𝑚

2

௠

ଶ
+1

k+1

• Then:
| LCS(x, y) |= max{c[௠

ଶ
,l]+c’[௠

ଶ
+1,l+1]}

0≤l≤n

9/28/18 CMPS 6610 Algorithms 27

Algorithm

0≤l≤n
1. Find k = arg max{c[௠

ଶ
,l]+c’[௠

ଶ
+1,l+1]}

2. Recursively compute z1=LCS(x[1.. ௠

ଶ
], y[1..k]) and

z2=LCS(x[௠

ଶ
+1 ..m], y[k+1..n]), and return the

concatenation z = z1 z2

Step 1: Compute c[௠

ଶ
,l] and c’[௠

ଶ
+1,l+1] for all 0≤l≤n.

𝑚

2

௠

ଶ
+1i

j

c c'

This can be done in O(mn) time
and O(n) space, using standard DP
without storing the whole table.

9/28/18 CMPS 6610 Algorithms 28

Runtime analysis

In the root of the recursion tree the runtime is cmn.
The total work in each subsequent level is half:

𝑚

2

௠

ଶ
+1i

j

k

Therefore the total runtime is at most:
௜ஶ

௜ୀ଴

The total space needed is only the space of O(n) used
within each recursive call.

