CMPS 6610 – Fall 2018

Dynamic Programming Carola Wenk

Slides by Carola Wenk, based on slides by Charles Leiserson

Dynamic programming

- Algorithm design technique
- A technique for solving problems that have
 - 1. an optimal substructure property (recursion)
 - 2. overlapping subproblems
- Idea: Do not repeatedly solve the same subproblems, but solve them only once and store the solutions in a dynamic programming table

Example: Fibonacci numbers

• F(0)=0; F(1)=1; F(n)=F(n-1)+F(n-2) for $n \ge 2$

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...

Dynamic-programming hallmark #1 Optimal substructure An optimal solution to a problem (instance) contains optimal solutions to subproblems.

Example: Fibonacci numbers

- F(0)=0; F(1)=1; F(n)=F(n-1)+F(n-2) for $n \ge 2$
- Implement this recursion directly:

- Runtime is exponential: $2^{n/2} \le T(n) \le 2^n$
- But we are repeatedly solving the same subproblems

Dynamic-programming hallmark #2

Overlapping subproblems A recursive solution contains a "small" number of distinct subproblems repeated many times.

The number of distinct Fibonacci subproblems is only n.

Dynamic-programming

There are two variants of dynamic programming:

- Bottom-up dynamic programming (often referred to as "dynamic programming")
- 2. Memoization

Bottom-up dynamicprogramming algorithm

• Store 1D DP-table and fill bottom-up:

fibBottomUpDP(*n*)

$$F[0] \leftarrow 0$$

 $F[1] \leftarrow 1$
for (*i* $\leftarrow 2$, *i* $\leq n$, *i*++)
 $F[i] \leftarrow F[i-1]+F[i-2]$
return $F[n]$

• Time =
$$\Theta(n)$$
, space = $\Theta(n)$

Memoization algorithm

```
Memoization: Use recursive algorithm. After computing
a solution to a subproblem, store it in a table.
Subsequent calls check the table to avoid redoing work.
fibMemoization(n)
   for all i: F[i] = null
   fibMemoizationRec(n, F)
   return F[n]
fibMemoizationRec(n,F)
   if (F[n] = null)
          if (n=0) F[n] \leftarrow 0
          if (n=1) F[n] \leftarrow 1
          F[n] \leftarrow fibMemoizationRec(n-1,F)
                   + fibMemoizationRec(n-2,F)
   return F[n]
• Time = \Theta(n), space = \Theta(n)
```

Longest Common Subsequence

Example: Longest Common Subsequence (LCS) • Given two sequences $x[1 \dots m]$ and $y[1 \dots n]$, find a longest subsequence common to them both. "a" not "the" functional notation, but not a function

Brute-force LCS algorithm

Check every subsequence of $x[1 \dots m]$ to see if it is also a subsequence of $y[1 \dots n]$.

Analysis

- 2^m subsequences of x (each bit-vector of length m determines a distinct subsequence of x).
- Hence, the runtime would be exponential !

Towards a better algorithm

Two-Step Approach:

- 1. Look at the *length* of a longest-common subsequence.
- 2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s by |s|.

Strategy: Consider *prefixes* of *x* and *y*.

- Define c[i, j] = |LCS(x[1 ... i], y[1 ... j])|.
- Then, c[m, n] = |LCS(x, y)|.

Let z[1 ldots k] = LCS(x[1 ldots i], y[1 ldots j]), where c[i, j] = k. Then, z[k] = x[i], or else z could be extended. Thus, z[1 ldots k-1] is CS of x[1 ldots i-1] and y[1 ldots j-1].

Proof (continued)

Claim: z[1 ... k-1] = LCS(x[1 ... i-1], y[1 ... j-1]).Suppose *w* is a longer CS of x[1 ... i-1] and y[1 ... j-1], that is, |w| > k-1. Then, *cut and paste*: w || z[k] (*w* concatenated with z[k]) is a common subsequence of x[1 ... i] and y[1 ... j] with |w|| z[k] | > k. Contradiction, proving the claim.

Thus, c[i-1, j-1] = k-1, which implies that c[i, j] = c[i-1, j-1] + 1.

Other cases are similar.

Dynamic-programming hallmark #1

Optimal substructure An optimal solution to a problem (instance) contains optimal solutions to subproblems.

Recursion

If z = LCS(x, y), then any prefix of z is an LCS of a prefix of x and a prefix of y.

Recursive algorithm for LCS

```
LCS(x, y, i, j)

if (i=0 or j=0)

c[i, j] \leftarrow 0

else if x[i] = y[j]

c[i, j] \leftarrow LCS(x, y, i-1, j-1) + 1

else c[i, j] \leftarrow max \{LCS(x, y, i-1, j), LCS(x, y, i, j-1)\}

return c[i, j]
```

Worst-case: $x[i] \neq y[j]$, in which case the algorithm evaluates two subproblems, each with only one parameter decremented.

Recursion tree (worst case)

Height = $m + n \Rightarrow$ work potentially exponential, but we're solving subproblems already solved!

Dynamic-programming hallmark #2

Overlapping subproblems A recursive solution contains a "small" number of distinct subproblems repeated many times.

The distinct LCS subproblems are all the pairs (i,j). The number of such pairs for two strings of lengths m and n is only mn.

Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

LCS mem(x, y, i, j)**if** c[i, j] =null **if** (*i*=0 or *j*=0) $c[i, j] \leftarrow 0$ same else if x[i] = y[j]as $c[i, j] \leftarrow \text{LCS} \text{mem}(x, y, i-1, j-1) + 1$ before else $c[i, j] \leftarrow \max\{\text{LCS mem}(x, y, i-1, j), \}$ LCS mem (x, y, i, j-1)} return c[i, j]Space = time = $\Theta(mn)$; constant work per table entry. CMPS 6610 Algorithms 9/28/18

Recursive formulation

$$c[i,j] = \begin{cases} 0 & , \text{ if } i=0 \text{ or } j=0 \\ c[i-1,j-1]+1 & , \text{ if } i,j>0 \text{ and } x[i] = y[j] \\ \max \{c[i-1,j], c[i,j-1]\}, \text{ otherwise} \end{cases}$$

$i-1 \quad i$ j-1 j c[i,j]

Bottom-up dynamicprogramming algorithm

IDEA:

Compute the table bottom-up. Time = $\Theta(mn)$.

Space = $\Theta(mn)$.

Bottom-up DP

Space = time = $\Theta(mn)$; constant work per table entry. LCS bottomUp(x[1..m], y[1..n]) for $(i=0; i\le m; i++) c[i,0]=0;$ for $(j=0; j\le n; j++) c[0,j]=0;$ for $(j=1; j \le n; j++)$ for $(i=1; i \le m; i++)$ **if** x[i] = y[j] { $c[i, j] \leftarrow c[i-1, j-1]+1$ arrow[i,j]="diagonal"; } else { // compute max **if** $(c[i-1, j] \ge c[i, j-1])$ { $c[i, j] \leftarrow c[i-1, j]$ arrow[i,j]="left"; } else { $c[i, j] \leftarrow c[i, j-1]$ arrow[i,j]="up"; return c and arrow

CMPS 6610 Algorithms

Reconstruct LCS by backtracking

Reducing space

- We can compute the *length* of an LCS in Θ(*mn*) time using only Θ(min{*m*,*n*}) space by filling the table row-by-row and only keeping two rows (or column-by-column if columns are shorter). (Exercise: use only min{*m*,*n*}+Θ(1) space.)
- However, without the whole DP table we cannot construct an LCS.
- Hirschberg's algorithm combines DP with divideand-conquer to construct an LCS in $\Theta(mn)$ time using only $\Theta(\min\{m,n\})$ space

Two recursive formulas

Consider *prefixes* of *x* and *y*.

- Define c[i, j] = |LCS(x[1 ... i], y[1 ... j])|.
- Then, c[m, n] = |LCS(x, y)|.

$$c[i,j] = \begin{cases} 0 & , \text{ if } i=0 \text{ or } j=0 \\ c[i-1,j-1]+1 & , \text{ if } i,j>0 \text{ and } x[i]=y[j] \\ \max\{c[i-1,j], c[i,j-1]\} & , \text{ otherwise} \end{cases}$$

Equivalently, we can consider *suffixes* of *x* and *y*.

- Define c'[i, j] = |LCS(x[i ...m], y[j ...n])|.
- Then, c'[1,1] = |LCS(x, y)|. $c'[i,j] = \begin{cases} 0 & , \text{ if } i=m+1 \text{ or } j=n+1 \\ c'[i+1,j+1]+1 & , \text{ if } i \leq m, j \leq n \text{ and } x[i] = y[j] \\ \max\{c'[i+1,j], c'[i,j+1]\}\}, \text{ otherwise} \end{cases}$

Hirschberg's D&C

- Without loss of generality assume $n \le m$.
- **Idea:** Use divide-and-conquer on string *x*.
- Let *z* be an LCS for *x* and *y*, and consider the correspondence of matching characters between *x* and *y* described by *z*.
- Let y[k] be the rightmost character in y that corresponds to a character in $x[1, \lfloor \frac{m}{2} \rfloor]$

Hirschberg's D&C

Let y[k] be the rightmost character in y that corresponds to a character in x[1.. [^m/₂]]; or 0 if no such character exists.

• Then: $| LCS(x, y) | = \max_{0 \le l \le n} \{ c[\lfloor \frac{m}{2} \rfloor, l] + c'[\lfloor \frac{m}{2} \rfloor + 1, l + 1] \}$

Algorithm

 $| \text{LCS}(x, y) | = \max_{0 \le l \le n} \{ c[\lfloor \frac{m}{2} \rfloor, l] + c'[\lfloor \frac{m}{2} \rfloor + 1, l + 1] \}$

- 1. Find $k = \arg \max_{0 \le l \le n} \{ c[\lfloor \frac{m}{2} \rfloor, l] + c'[\lfloor \frac{m}{2} \rfloor + 1, l + 1] \}$
- 2. Recursively compute $z_1 = LCS(x[1.. \lfloor \frac{m}{2} \rfloor], y[1..k])$ and $z_2 = LCS(x[\lfloor \frac{m}{2} \rfloor + 1..m], y[k+1..n])$, and return the concatenation $z = z_1 z_2$
- **Step 1:** Compute $c[\lfloor \frac{m}{2} \rfloor, l]$ and $c'[\lfloor \frac{m}{2} \rfloor + 1, l+1]$ for all $0 \le l \le n$.

This can be done in O(mn) time and O(n) space, using standard DP without storing the whole table.

Runtime analysis

In the root of the recursion tree the runtime is *cmn*. The total work in each subsequent level is half:

Therefore the total runtime is at most:

$$cmn\sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^{i} \in O(mn)$$

The total space needed is only the space of O(n) used within each recursive call.