CMPS 6610 Algorithms - Fall 18

8. Homework

Due 11/5/18 at the beginning of class

Justify all your answers.

1. Fibonacci Heaps (6 points)

(a) Describe what sequence of operations in a Fibonacci heap results in a root that is marked.
(b) For any $n \geq 1$, describe how to form a sequence of Fibonacci heap operations that creates a Fibonacci heap in which all n nodes form a single path of height n.
(c) In the amortized analysis of Fibonacci heaps, why is the potential function not simply $\Phi(H)=\operatorname{trees}(H)+\operatorname{marks}(H)$?

2. Negative edge weights (4 points)

(a) Give an example of a directed connected graph with real edge weights (that may be negative) for which Dijkstra's algorithm produces incorrect answers.
(b) Suppose the weighted, directed graph $G=(V, E)$ has a special structure in which edges that leave the source vertex s may have negative weights. All other edge weights are nonnegative, and there are no negative-weight cycles. Show that Dijkstra's algorithm correctly finds shortest paths from s in G.

3. Floyd-Warshall (6 points)

(a) Show how to use the Floyd Warshall algorithm to detect whether a weighted graph contains a negative weight cycle.
(b) Suppose you run the Floyd Warshall algorithm for $k=1$ to $n-1$, and not to n. Does this still compute the correct output?
(c) In the Floyd Warshall algorithm, can you switch the order of the three forloops and still compute the correct output?
4. Shortest Path with Minimum Number of Edges (8 points)

Let $G=(V, E)$ be a directed graph with positive edge weights, and let $s \in V$ be a source vertex.
(a) Give an example which shows that Dijkstra's algorithm does not always compute shortest paths from s with the minimum number of edges. Indicate the d -values and the shortest path tree.
(b) Modify Dijkstra's algorithm to compute shortest paths from s with the minimum number of edges.
(c) Show the output (d-values and shortest path tree) of your modified algorithm on the example from part (a) above.

