CMPS 6610 Algorithms - Fall 18

6. Homework

Due $\mathbf{1 0} / \mathbf{2 2} / \mathbf{1 8}$ at the beginning of class

Justify all your answers.

1. Covering points ($\mathbf{1 0}$ points)

Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ be a set of n real numbers. Assume $a_{1} \leq a_{2} \leq \ldots \leq a_{n}$. We can consider these numbers to be points on the real line. The task is to determine the smallest set of unit-length (closed) intervals so that the union of the intervals covers (i.e., contains) all of the input points. Consider the following two greedy approaches:
(a) Let I be an interval that covers the most points in A. Add I to the solution, remove the points covered by I from A, and repeat.
(b) Add the interval $I=\left[a_{1}, a_{1}+1\right]$ to the solution, remove the points covered by I from A, and repeat.

Prove or disprove the correctness of these greedy approaches.
(Hint: One of these approaches is correct, the other one is not.)

2. Binary search in multiple arrays (12 points)

While binary search runs efficiently on a sorted array, inserting a new number into the array takes linear time. We are going to see that we can store n numbers in a set of sorted arrays, such that search as well as insertion can be implemented to run efficiently.
(a) As a warmup, use aggregate amortized analysis to analyze the amortized runtime of incrementing a binary counter. (It helps to look at the flipping behavior of each bit.)
(b) Now consider the following data structure for storing n numbers:

Let $n_{k-1} n_{k-2} \ldots n_{1} n_{0}$ be the binary representation of n, using $k=\lceil\log (n+1)\rceil$ bits. The data structure stores k sorted arrays A_{0}, \ldots, A_{k-1}, where A_{i} stores exactly 2^{i} numbers if $n_{i}=1$, and A_{i} is empty if $n_{i}=0$. With this setup the data structure does indeed store $\sum_{i=0}^{k-1} n_{i} 2^{i}=n$ numbers.
i. Please describe how to efficiently search in this data structure, and analyze the worst-case running time.
ii. Please describe how to insert a number into this data structure. Analyze the worst-case running time and as well as its amortized running time.

