
CMPS 6610 Algorithms – Fall 18

10/15/18

6. Homework
Due 10/22/18 at the beginning of class

Justify all your answers.

1. Covering points (10 points)

Let A = {a1, a2, . . . , an} be a set of n real numbers. Assume a1 ≤ a2 ≤ . . . ≤ an.
We can consider these numbers to be points on the real line. The task is to
determine the smallest set of unit-length (closed) intervals so that the union of the
intervals covers (i.e., contains) all of the input points. Consider the following two
greedy approaches:

(a) Let I be an interval that covers the most points in A. Add I to the solution,
remove the points covered by I from A, and repeat.

(b) Add the interval I = [a1, a1 + 1] to the solution, remove the points covered
by I from A, and repeat.

Prove or disprove the correctness of these greedy approaches.
(Hint: One of these approaches is correct, the other one is not.)

2. Binary search in multiple arrays (12 points)
While binary search runs efficiently on a sorted array, inserting a new number into
the array takes linear time. We are going to see that we can store n numbers in
a set of sorted arrays, such that search as well as insertion can be implemented to
run efficiently.

(a) As a warmup, use aggregate amortized analysis to analyze the amortized
runtime of incrementing a binary counter. (It helps to look at the flipping
behavior of each bit.)

(b) Now consider the following data structure for storing n numbers:
Let nk−1nk−2 . . . n1n0 be the binary representation of n, using k = dlog(n+1)e
bits. The data structure stores k sorted arrays A0, . . . , Ak−1, where Ai stores
exactly 2i numbers if ni = 1, and Ai is empty if ni = 0. With this setup the
data structure does indeed store

∑k−1
i=0 ni2

i = n numbers.

i. Please describe how to efficiently search in this data structure, and ana-
lyze the worst-case running time.

ii. Please describe how to insert a number into this data structure. Analyze
the worst-case running time and as well as its amortized running time.


