CMPS 6610 Algorithms - Fall 18

9/10/18

2. Homework

Due $\mathbf{9 / 1 7} / \mathbf{1 8}$ at the beginning of class

1. Heaps (9 points)

(a) (3 points) A (binary) min-heap is a binary tree that is almost complete and that fulfills the min-heap property: For every node x, we have $y \geq x$ for all nodes y in any subtree of x.
Can you give an example of a binary tree that is both a max-heap and a min-heap? Find such an example for as many $n>0$ as you can, where n is the number of elements in the binary tree. And argue for which n you cannot find such an example.
(b) (3 points) Can you give an example of a binary tree that is both a max-heap and a binary search tree? Find such an example for as many $n>0$ as you can, where n is the number of elements in the binary tree. And argue for which n you cannot find such an example.
(c) (3 points) A sorting algorithm is stable if it preserves the input order among equal elements. Give a counterexample to show that heapsort is not stable.

2. Divide-and-conquer (6 points)

Let $A=A[0, \ldots, n-1]$ be a sorted array of n distinct integers in the range 0 to n. The task is to identify the missing integer. For example, the missing integer in $A=[0,1,2,3,4,6,7]$ is 5 . Give pseudocode for a divide-and-conquer algorithm that computes the missing integer in $O(\log n)$ time. Justify the correctness of your code and its runtime briefly.

3. Recurrence (6 points)

Use a recursion tree and big-Oh induction to asymptotically solve the recurrence below:

$$
\begin{aligned}
& T(0)=T(1)=1 \\
& T(n)=2 T(n / 3)+T(n / 4)+n, \text { for all } n \geq 4
\end{aligned}
$$

You only need to prove the big-Oh bound. But make your bound as tight as possible. You do not need to prove the base case for the big-Oh induction.

