10. Homework

Due $12 / 5 / 18$ at the beginning of class

Justify all your answers.

1. To Be or Not to Be ... in P, NP, or Co-NP (4 points)

Specify for each of the problems below whether they are in $P, N P$, and/or co- $N P$.
(a) Given a directed graph $G=(V, E)$. Is G a DAG?
(b) Given an undirected graph $G=(V, E)$, and $k>0$. Is there a subset $S \subseteq V$ with $|S| \leq k$ such that every vertex not in S is adjacent to a vertex in S ?
(c) Given a positive integer a, is a a prime number (i.e., a has no positive integer factors other than 1 and a)?
(d) Given a directed graph $G=(V, E)$ with non-negative edge weights, and two vertices $s, t \in V$. Compute a shortest path from s to t in G.
2. NP-completeness (8 points)
(a) The Longest Path problem takes an undirected weighted graph $G=(V, E)$ with positive edge weights as well as a positive integer k as input, and asks whether there is a simple path of weight at least k in G.
Show that Longest Path is $N P$-complete.
(b) The Subgraph Isomorphism problem takes two graphs G_{1} and G_{2} as input and asks whether G_{1} is isomorphic to a subgraph of G_{2}.

- $G=(V, E)$ is a subgraph of $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ if $V \subseteq V^{\prime}$ and $E \subseteq E^{\prime}$.
- Two graphs $G=(V, E)$ and $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ are isomorphic if there exists a bijective map $F: V \rightarrow V^{\prime}$ such that $(u, v) \in E \Leftrightarrow(f(u), f(v)) \in E^{\prime}$.
Show that Subgraph Isomorphism is $N P$-complete.

3. $\Pi_{1} \leq \Pi_{2}$ (10 points)

Let Π_{1} and Π_{2} be decision problems and suppose Π_{1} is polynomial-time reducible to Π_{2}, so, $\Pi_{1} \leq \Pi_{2}$. Answer each of the questions below:
(a) If $\Pi_{2} \in P$ does this imply that $\Pi_{1} \in P$?
(b) If $\Pi_{1} \in N P$, does this imply that $\Pi_{2} \in N P$?
(c) If $\Pi_{2} \in c o-N P$, does this imply that $\Pi_{1} \in c o-N P$?
(d) If $\Pi_{1} \in N P$, does this imply that Π_{2} is NP-complete?
(e) If $\Pi_{1} \notin P$ does this imply that $\Pi_{2} \notin P$?
(f) If Π_{2} is NP-complete, does this imply that $\Pi_{1} \in N P$?
(g) If Π_{1} is NP-complete, does this imply that $\Pi_{2} \in N P$?
(h) If $\Pi_{1} \in N P$ and $\Pi_{2} \in P$, what does this imply?
(i) If Π_{1} is NP-complete and $\Pi_{2} \in P$, what does this imply?
(j) If Π_{1} is NP-complete and $\Pi_{2} \in c o-N P$, what does this imply?

