11/28/18

10. Homework Due 12/5/18 at the beginning of class

Justify all your answers.

1. To Be or Not to Be ... in P, NP, or Co-NP (4 points)

Specify for each of the problems below whether they are in P, NP, and/or co-NP.

- (a) Given a directed graph G = (V, E). Is G a DAG?
- (b) Given an undirected graph G = (V, E), and k > 0. Is there a subset $S \subseteq V$ with $|S| \leq k$ such that every vertex not in S is adjacent to a vertex in S?
- (c) Given a positive integer a, is a prime number (i.e., a has no positive integer factors other than 1 and a)?
- (d) Given a directed graph G = (V, E) with non-negative edge weights, and two vertices $s, t \in V$. Compute a shortest path from s to t in G.

2. NP-completeness (8 points)

- (a) The **Longest Path** problem takes an undirected weighted graph G = (V, E) with positive edge weights as well as a positive integer k as input, and asks whether there is a simple path of weight at least k in G. Show that **Longest Path** is NP-complete.
- (b) The **Subgraph Isomorphism** problem takes two graphs G_1 and G_2 as input and asks whether G_1 is isomorphic to a subgraph of G_2 .
 - G = (V, E) is a subgraph of G' = (V', E') if $V \subseteq V'$ and $E \subseteq E'$.
 - Two graphs G = (V, E) and G' = (V', E') are *isomorphic* if there exists a bijective map $F : V \to V'$ such that $(u, v) \in E \Leftrightarrow (f(u), f(v)) \in E'$.

Show that **Subgraph Isomorphism** is *NP*-complete.

3. $\Pi_1 \leq \Pi_2$ (10 points)

Let Π_1 and Π_2 be decision problems and suppose Π_1 is polynomial-time reducible to Π_2 , so, $\Pi_1 \leq \Pi_2$. Answer each of the questions below:

- (a) If $\Pi_2 \in P$ does this imply that $\Pi_1 \in P$?
- (b) If $\Pi_1 \in NP$, does this imply that $\Pi_2 \in NP$?
- (c) If $\Pi_2 \in co-NP$, does this imply that $\Pi_1 \in co-NP$?
- (d) If $\Pi_1 \in NP$, does this imply that Π_2 is NP-complete?
- (e) If $\Pi_1 \notin P$ does this imply that $\Pi_2 \notin P$?
- (f) If Π_2 is NP-complete, does this imply that $\Pi_1 \in NP$?
- (g) If Π_1 is NP-complete, does this imply that $\Pi_2 \in NP$?
- (h) If $\Pi_1 \in NP$ and $\Pi_2 \in P$, what does this imply?
- (i) If Π_1 is NP-complete and $\Pi_2 \in P$, what does this imply?
- (j) If Π_1 is NP-complete and $\Pi_2 \in co-NP$, what does this imply?