CMPS 6610 Algorithms - Fall 18

1. Homework

Due $\mathbf{9 / 1 0} / \mathbf{1 8}$ at the beginning of class

1. Big-Oh implications (9 points)

Let f, g be two functions such that $f(n) \in O(g(n))$. In addition assume that f and g are well-behaved in the sense that $f(n) \geq 1$ and $\log g(n) \geq 1$ for n large enough. For each of the statements below, either prove that it is true or disprove it by giving a counterexample. (Hint: For the proofs, use the definition of big-Oh.)
(a) $\log f(n) \in O(\log g(n))$
(b) $2^{f(n)} \in O\left(2^{g(n)}\right)$
(c) $f(n)^{2} \in O\left(g(n)^{2}\right)$

2. Big-Oh ranking (12 points)

Rank the following twelve functions by order of growth, i.e., find an arrangement f_{1}, f_{2}, \ldots of the functions satisfying $f_{1} \in O\left(f_{2}\right), f_{2} \in O\left(f_{3}\right), \ldots$. Partition your list into equivalence classes such that f and g are in the same class if and only if $f \in \Theta(g)$. For every two functions f_{i}, f_{j} that are adjacent in your ordering, prove shortly why $f_{i} \in O\left(f_{j}\right)$. And if f and g are in the same class, prove that $f \in \Theta(g)$.

$$
\begin{array}{r}
\log \log n, 2^{n+3}, \log n!, \log n, n^{3}, 8^{n}, 2^{n} \\
\log \sqrt{n}, \sqrt{\log n}, \sqrt{n}, 8^{\log n}, \log ^{2} n,
\end{array}
$$

A few important rules:

- The rule of l'Hôpital:

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\lim _{n \rightarrow \infty} \frac{f^{\prime}(n)}{g^{\prime}(n)}
$$

if the limits exist; where f and g^{\prime} are the derivatives of f and g, respectively.

- Chain and product rules for differentiation.
- $\log n=\log _{2} n$
- Log-rules (see chapter 3.2 in the book): $b^{\log _{b} a}=a, \log _{b} b=1, a^{\log _{b} c}=c^{\log _{b} a}$
- $n!\in O\left(n^{n}\right)$

3. Lower bound (6 points)

Consider the following two problems:

- Problem 1: Given an unsorted array A of n numbers, and a number x. Compute which elements in A are less than x.
- Problem 2: Given a sorted array of n numbers, and a number x. Compute which elements in A are less than x.

Provide lower bounds for comparison-based algorithms that solve these problems. Use decision trees.
Hint: Make sure to specify how the output is represented.

