CMPS 6610/4610 – Fall 2016

Knapsack Problem Carola Wenk

Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

Knapsack Problem

- Given a knapsack with weight capacity W > 0, and given n items of positive integer weights $w_1, ..., w_n$ and positive integer values $v_1, ..., v_n$. (So, item i has value v_i and weight w_i .)
- **0-1 Knapsack Problem:** Compute a subset of items that maximize the total value (sum), and they all fit into the knapsack (total weight at most W).
- Fractional Knapsack Problem: Same as before but we are allowed to take fractions of items (\rightarrow gold dust).

Greedy Knapsack

- Greedy Strategy:
 - Compute $\frac{v_i}{w_i}$ for each i
 - Greedily take as much as possible of the item with the highest value/weight. Then repeat/recurse.
 - ⇒ Sort items by value/weight
 - $\Rightarrow O(n \log n)$ runtime

Knapsack Example

item	1	2	3	
value	12	15	4	W=4
weight	2	3	1	
value/weight	6	5	4	

- Greedy fractional: Take item 1 and 2/3 of item 2
- \Rightarrow weight=4, value=12+2/3·15 = 12+10 = 22
- Greedy 0-1: Take item 1 and then item 3
- \Rightarrow weight = 1+2=3, value=12+4=16
- Optimal 0-1: Take items 2 and 3, value =19

Optimal Substructure

- Let $s_1, ..., s_n$ be an optimal solution, where $s_i =$ amount of item i that is taken; $0 \le s_i \le 1$
- Suppose we remove one item. $\rightarrow n-1$ items left
- Is the remaining "solution" still an optimal solution for n-1 items?
- Yes; cut-and-paste.

Correctness Proof for Greedy

- Suppose items 1, ..., n are numbered in decreasing order by value/weight.
- Greedy solution G: Takes all elements $1, ..., j, ..., i^*-1$ and a fraction of i^* .
- Assume optimal solution S is different from G. Assume S takes only a fraction $\frac{1}{a}$ of item j, for $j \le i^*-1$.
- Create new solution S' from S by taking $w_j 1/a$ weight away from items > j, and add $w_j 1/a$ of item j back in. Hence, all of item j is taken.
- \Rightarrow New solution S' has the same weight but increased value. This contradicts the assumption that S was optimal. \Rightarrow S=G.

General Solution: DP

- $D[i, w] = \max$ value possible for taking a subset of items 1, ..., i with knapsack constraint w.
- D[0, w] = D[i, 0] = 0 for all $0 \le i \le n$ and $0 \le w \le W$ D[i, w] = 0 for w < 0 $D[i, w] = \max(D[i-1, w], v_i + D[i-1, w-w_i])$ don't take item i take item i
- Compute D[n, W] by filling an $n \times W$ DP-table. \Rightarrow Two nested for-loops, runtime and space $\Theta(nW)$
- Trace back from D[n, W] by redoing computation or following arrows. $\Rightarrow \Theta(n + W)$ runtime

DP Example

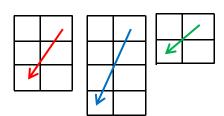
Solution:

Take items 3 and 2

W=4				
item	1	2	3	
value	12	15	4	
weight	2	3	1	
value/weight	6	5	4	

•					
W=4	0	12	15	19	
3	0	12	,15	16	
2	0	12	12	12	
1	0	0/	0	4	
0	0<	-0	0	0	
	0	1	2	3	\rightarrow
				n	

Take item i:



Don't take item i:

$$D[i, w] = \max(\underline{D[i-1, w]}, \underline{v_i} + \underline{D[i-1, w-w_i]})$$
don't take item i take item i