
CMPS 6610/4610 Algorithms 1

CMPS 6610/4610 – Fall 2016

Dynamic Programming
Carola Wenk

Slides courtesy of Charles Leiserson with changes and additions by
Carola Wenk

CMPS 6610/4610 Algorithms 2

Dynamic programming

• Algorithm design technique

• A technique for solving problems that have

1. an optimal substructure property (recursion)

2. overlapping subproblems

• Idea: Do not repeatedly solve the same subproblems,
but solve them only once and store the solutions in a
dynamic programming table

CMPS 6610/4610 Algorithms 3

Example: Fibonacci numbers
• F(0)=0; F(1)=1; F(n)=F(n-1)+F(n-2) for n  2

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

Dynamic-programming hallmark #1
Optimal substructure

An optimal solution to a problem
(instance) contains optimal
solutions to subproblems.

Recursion

CMPS 6610/4610 Algorithms 4

Example: Fibonacci numbers
• F(0)=0; F(1)=1; F(n)=F(n-1)+F(n-2) for n  2

• Implement this recursion directly:

F(n)
F(n-1) F(n-2)

F(n-2) F(n-3) F(n-3) F(n-4)

F(n-3) F(n-4)F(n-4) F(n-5) F(n-4) F(n-5)F(n-5) F(n-6)

same
subproblem

n n/2

• Runtime is exponential: 2n/2 ≤ T(n) ≤ 2n

• But we are repeatedly solving the same subproblems

CMPS 6610/4610 Algorithms 5

Dynamic-programming
hallmark #2

Overlapping subproblems
A recursive solution contains a

“small” number of distinct
subproblems repeated many times.

The number of distinct Fibonacci
subproblems is only n.

CMPS 6610/4610 Algorithms 6

Dynamic-programming

There are two variants of dynamic
programming:

1. Bottom-up dynamic programming
(often referred to as “dynamic
programming”)

2. Memoization

Bottom-up dynamic-
programming algorithm

fibBottomUpDP(n)
F[0]  0
F[1]  1
for (i  2, i≤ n, i++)

F[i]  F[i-1]+F[i-2]
return F[n]

• Store 1D DP-table and fill bottom-up:

F: 0 1 1 2 3 5 8

• Time = (n), space = (n)
7CMPS 6610/4610 Algorithms

CMPS 6610/4610 Algorithms 8

Memoization algorithm
Memoization: Use recursive algorithm. After computing
a solution to a subproblem, store it in a table.
Subsequent calls check the table to avoid redoing work.

fibMemoizationRec(n,F)
if (F[n]= null)

if (n=0) F[n]  0
if (n=1) F[n]  1
F[n]  fibMemoizationRec(n-1,F)

+ fibMemoizationRec(n-2,F)
return F[n]

• Time = (n), space = (n)

fibMemoization(n)
for all i: F[i] = null
fibMemoizationRec(n,F)
return F[n]

CMPS 6610/4610 Algorithms 9

Longest Common Subsequence

Example: Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find

a longest subsequence common to them both.

x: A B C B D A B

y: B D C A B A

“a” not “the”

BCBA =
LCS(x, y)

functional notation,
but not a function

CMPS 6610/4610 Algorithms 10

Brute-force LCS algorithm

Check every subsequence of x[1 . . m] to see
if it is also a subsequence of y[1 . . n].

Analysis
• 2m subsequences of x (each bit-vector of

length m determines a distinct subsequence
of x).

• Hence, the runtime would be exponential !

CMPS 6610/4610 Algorithms 11

Towards a better algorithm
Two-Step Approach:
1. Look at the length of a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.

Strategy: Consider prefixes of x and y.
• Define c[i, j] = | LCS(x[1 . . i], y[1 . . j]) |.
• Then, c[m, n] = | LCS(x, y) |.

Notation: Denote the length of a sequence s
by | s |.

CMPS 6610/4610 Algorithms 12

Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

Let z[1 . . k] = LCS(x[1 . . i], y[1 . . j]), where c[i, j]
= k. Then, z[k] = x[i], or else z could be extended.
Thus, z[1 . . k–1] is CS of x[1 . . i–1] and y[1 . . j–1].

Proof. Case x[i] = y[j]:

...
1 2 i m

...
1 2 j n

x:

y:
=

CMPS 6610/4610 Algorithms 13

Proof (continued)
Claim: z[1 . . k–1] = LCS(x[1 . . i–1], y[1 . . j–1]).

Suppose w is a longer CS of x[1 . . i–1] and
y[1 . . j–1], that is, |w | > k–1. Then, cut and
paste: w || z[k] (w concatenated with z[k]) is a
common subsequence of x[1 . . i] and y[1 . . j]
with |w || z[k] | > k. Contradiction, proving the
claim.

Thus, c[i–1, j–1] = k–1, which implies that c[i, j]
= c[i–1, j–1] + 1.
Other cases are similar.

CMPS 6610/4610 Algorithms 14

Dynamic-programming
hallmark #1

Optimal substructure
An optimal solution to a problem

(instance) contains optimal
solutions to subproblems.

If z = LCS(x, y), then any prefix of z is
an LCS of a prefix of x and a prefix of y.

Recursion

CMPS 6610/4610 Algorithms 15

Recursive algorithm for LCS
LCS(x, y, i, j)

if (i=0 or j=0)
c[i, j]  0

else if x[i] = y[j]
c[i, j]  LCS(x, y, i–1, j–1) + 1

else c[i, j]  max{LCS(x, y, i–1, j),
LCS(x, y, i, j–1)}

return c[i, j]

Worst-case: x[i]  y[j], in which case the algorithm
evaluates two subproblems, each with only one
parameter decremented.

CMPS 6610/4610 Algorithms 16

same
subproblem

,
but we’re solving subproblems already solved!

Recursion tree
m = 3, n = 4: 3,4

2,4

1,4

3,3

3,22,3

1,3 2,2

Height = m + n  work potentially exponential.

2,3

1,3 2,2

m+n

CMPS 6610/4610 Algorithms 17

Dynamic-programming
hallmark #2

Overlapping subproblems
A recursive solution contains a

“small” number of distinct
subproblems repeated many times.

The distinct LCS subproblems are all the
pairs (i,j). The number of such pairs for two
strings of lengths m and n is only mn.

CMPS 6610/4610 Algorithms 18

Memoization algorithm
Memoization: After computing a solution to a
subproblem, store it in a table. Subsequent calls check
the table to avoid redoing work.

Space = time = (mn); constant work per table entry.

same
as
before

LCS(x, y, i, j)
if c[i, j] = NIL

if (i=0 or j=0)
c[i, j]  0

else if x[i] = y[j]
c[i, j]  LCS(x, y, i–1, j–1) + 1

else c[i, j]  max{LCS(x, y, i–1, j),
LCS(x, y, i, j–1)}

return c[i, j]

CMPS 6610/4610 Algorithms 19

Recursive formulation

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{c[i–1, j], c[i, j–1]} otherwise.

c[i,j]

i

j
j-1

i-1c:

CMPS 6610/4610 Algorithms 20

0 0 0 0 0
0 0 1 1 1

0
1

0
1

0
1

0 0 1 1 1 2 2 2D
0 0 1 2 2 2 2C 2
0 1 1 2 2 2 3 3A
0 1 2 2 3 3 3B 4
0 1 2 2 3

A

Bottom-up dynamic-
programming algorithm

IDEA:
Compute the
table bottom-up.

A B C B D B

B

A 3 4

Time = (mn).

4

xy

CMPS 6610/4610 Algorithms 21

AA B C B D B

D
C
A
B

B

A

00
A
00

B
00

C
00

B

B
0

0 0 1 1 11
D

D
0
1

0
1

0
1

0 0 1 1 1 22
C

2 2
0 0 1 2 2 22

A

A

2 2
0 1 1 2 2 2 33

B

B

3
0 1 2 2 3 3 3 44

A 0 1 2 2 3

Bottom-up dynamic-
programming algorithm

IDEA:
Compute the
table bottom-up.

3 4

Time = (mn).

4

Reconstruct
LCS by back-
tracking.

4
Space = (mn).
Exercise:
O(min{m, n}).

xy

