CMPS 6610/4610 - Fall 2016

Master Theorem Carola Wenk

Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

The divide-and-conquer design paradigm

1. Divide the problem (instance) into subproblems of sizes that are fractions of the original problem size.
2. Conquer the subproblems by solving them recursively.
3. Combine subproblem solutions.
\Rightarrow Runtime recurrences

The master method

The master method applies to recurrences of the form

$$
T(n)=a T(n / b)+f(n),
$$

where $a \geq 1, b>1$, and f is asymptotically positive.

Example: merge sort

1. Divide: Trivial.
2. Conquer: Recursively sort $a=2$ subarrays of size $n / 2=n / b$
3. Combine: Linear-time merge, runtime $f(n) \in O(n)$

Master Theorem

$$
T(n)=a T(n / b)+f(n)
$$

CASE 1:

$f(n)=O\left(n^{\log b a-\varepsilon}\right)$

$$
\Rightarrow T(n)=\Theta\left(n^{\log _{b} a}\right)
$$

for some $\varepsilon>0$
CASE 2:
$f(n)=\Theta\left(n^{\log _{b} a} \log ^{k} n\right) \quad \Rightarrow T(n)=\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
for some $\mathrm{k} \geq 0$
CASE 3:
(i) $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$
for some $\varepsilon>0$
and (ii) $a f(n / b) \leq c f(n)$
for some $c<1$

How to apply the theorem

Compare $f(n)$ with $n^{\log _{b} a}$:

1. $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$ for some constant $\varepsilon>0$.

- $f(n)$ grows polynomially slower than $n^{\log _{b} a}$ (by an n^{ε} factor).
Solution: $T(n)=\Theta\left(n^{\log _{b} a}\right)$.

2. $f(n)=\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$ for some constant $k \geq 0$.

- $f(n)$ and $n^{\log _{b} a}$ grow at similar rates.

Solution: $T(n)=\Theta\left(n^{\log b a} \log ^{k+1} n\right)$.

How to apply the theorem

Compare $f(n)$ with $n^{\log _{b} a}$:

3. $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ for some constant $\varepsilon>0$.

- $f(n)$ grows polynomially faster than $n^{\log _{b} a}$ (by an n^{ε} factor),
and $f(n)$ satisfies the regularity condition that $a f(n / b) \leq c f(n)$ for some constant $c<1$.
Solution: $T(n)=\Theta(f(n))$.

Example: merge sort

1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays.
3. Combine: Linear-time merge.

$$
T(n)=2 T(n / 2)+O(n) .
$$

\# subproblems subproblem size work dividing and combining

$$
\begin{aligned}
& n^{\log _{b} a}=n^{\log _{2} 2}=n^{1}=n \Rightarrow \text { CASE } 2(k=0) \\
& \quad \Rightarrow T(n)=\Theta(n \log n) .
\end{aligned}
$$

Example: binary search

$$
\begin{aligned}
& n^{\log _{b} a}=n^{\log _{2} 1}=n^{0}=1 \Rightarrow \text { CASE } 2(k=0) \\
& \quad \Rightarrow T(n)=\Theta(\log n) .
\end{aligned}
$$

Master theorem: Examples

$$
\begin{aligned}
& \text { Ex. } T(n)=4 T(n / 2)+\sqrt{n} \\
& a=4, b=2 \Rightarrow n^{\log _{b} a}=n^{2} ; f(n)=\sqrt{n} \\
& \text { CASE 1: } f(n)=O\left(n^{2-\varepsilon}\right) \text { for } \varepsilon=1.5 . \\
& \therefore T(n)=\Theta\left(n^{2}\right) .
\end{aligned}
$$

Ex. $T(n)=4 T(n / 2)+n^{2}$ $a=4, b=2 \Rightarrow n^{\log _{b} a}=n^{2} ; f(n)=n^{2}$.
CASE 2: $f(n)=\Theta\left(n^{2} \log ^{0} n\right)$, that is, $k=0$.
$\therefore T(n)=\Theta\left(n^{2} \log n\right)$.

Master theorem: Examples

$$
\begin{aligned}
& \text { Ex. } T(n)=4 T(n / 2)+n^{3} \\
& a=4, b=2 \Rightarrow n^{\log b a}=n^{2} ; f(n)=n^{3} . \\
& \text { CASE 3: } f(n)=\Omega\left(n^{2+\varepsilon}\right) \text { for } \varepsilon=1 \\
& \text { and } 4(n / 2)^{3} \leq c n^{3}(\text { reg. cond.) for } c=1 / 2 . \\
& \therefore T(n)=\Theta\left(n^{3}\right) \text {. } \\
& \text { Ex. } T(n)=4 T(n / 2)+n^{2} / \log n \\
& a=4, b=2 \Rightarrow n^{\log b a}=n^{2} ; f(n)=n^{2} / \log n \text {. } \\
& \text { Master method does not apply. In particular, } \\
& \text { for every constant } \varepsilon>0, \text { we have } \log n \in o\left(n^{\varepsilon}\right) .
\end{aligned}
$$

Conclusion

- Divide and conquer is just one of several powerful techniques for algorithm design.
- Divide-and-conquer algorithms can be analyzed using recurrences and the master method.
- Can lead to more efficient algorithms

