CMPS 6610/4610 – Fall 2016

Union-Find Data Structures

Carola Wenk

Slides courtesy of Charles Leiserson with small changes by Carola Wenk

Disjoint-set data structure (Union-Find)

Problem:

- Maintain a dynamic collection of *pairwise-disjoint* sets $S = \{S_1, S_2, ..., S_r\}$.
- Each set S_i has one element distinguished as the representative element, $rep[S_i]$.
- Must support 3 operations:
 - Make-Set(x): adds new set {x} to S

```
with rep[\{x\}] = x (for any x \notin S_i for all i)
```

- Union(x, y): replaces sets S_x , S_y with $S_x \cup S_y$ in S_y (for any x, y in distinct sets S_x , S_y)
- FIND-SET(x): returns representative $rep[S_x]$ of set S_x containing element x

Union-Find Example

$$S = \{\}$$

$$MAKE-SET(2)$$

$$S = \{\{2\}\}$$

$$MAKE-SET(3)$$

$$S = \{\{2\}, \{3\}\}\}$$

$$MAKE-SET(4)$$

$$S = \{\{2\}, \{3\}\}\}$$

$$S = \{\{2\}, \{3\}, \{4\}\}\}$$

$$FIND-SET(4) = 4$$

$$UNION(2, 4)$$

$$S = \{\{2, 4\}, \{3\}\}\}$$

$$FIND-SET(4) = 2$$

$$MAKE-SET(5)$$

$$S = \{\{2, 4\}, \{3\}, \{5\}\}\}$$

$$UNION(4, 5)$$

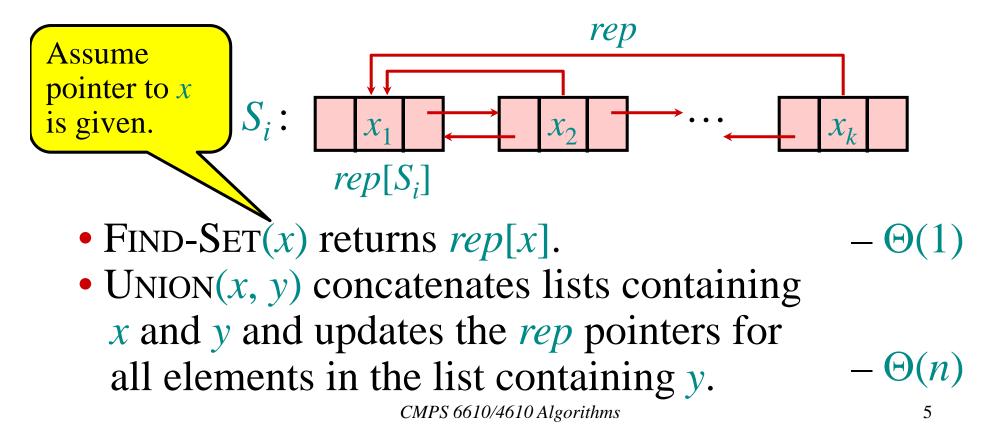
$$S = \{\{2, 4, 5\}, \{3\}\}$$

Plan of attack

- We will build a simple disjoint-set data structure that, in an **amortized sense**, performs significantly better than $\Theta(\log n)$ per op., even better than $\Theta(\log \log n)$, $\Theta(\log \log \log n)$, ..., but not quite $\Theta(1)$.
- To reach this goal, we will introduce two key *tricks*. Each trick converts a trivial $\Theta(n)$ solution into a simple $\Theta(\log n)$ amortized solution. Together, the two tricks yield a much better solution.
- First trick arises in an augmented linked list. Second trick arises in a tree structure.

Augmented linked-list solution

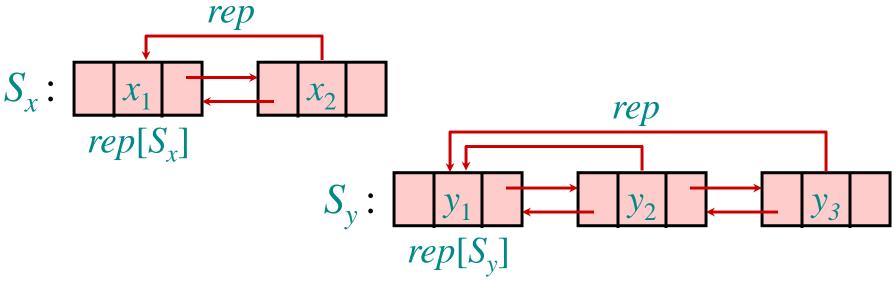
Store $S_i = \{x_1, x_2, ..., x_k\}$ as unordered doubly linked list. **Augmentation:** Each element x_j also stores pointer $rep[x_i]$ to $rep[S_i]$ (which is the front of the list, x_1).



Example of augmented linked-list solution

Each element x_j stores pointer $rep[x_j]$ to $rep[S_i]$. UNION(x, y)

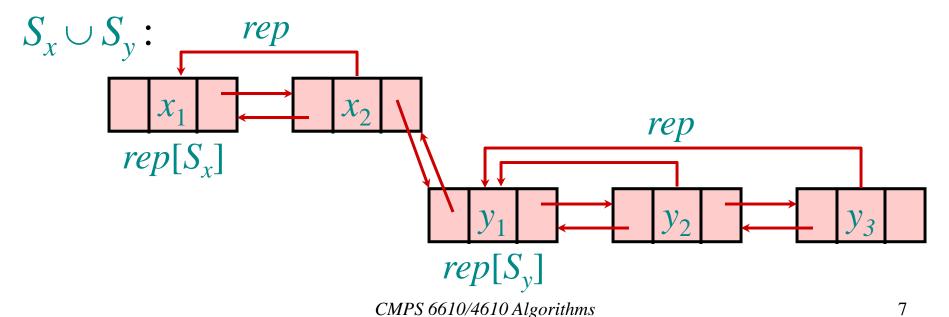
- concatenates the lists containing x and y, and
- updates the *rep* pointers for all elements in the list containing y.



Example of augmented linked-list solution

Each element x_j stores pointer $rep[x_j]$ to $rep[S_i]$. UNION(x, y)

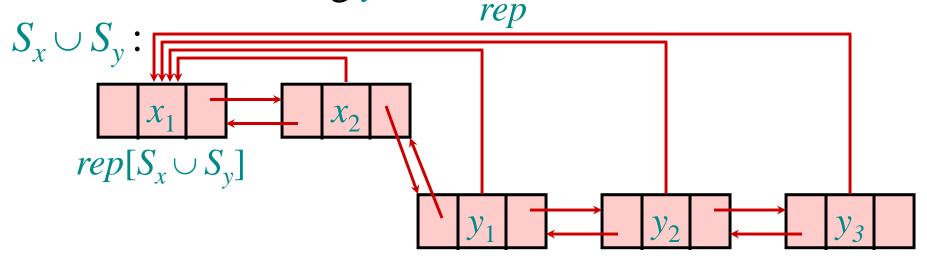
- concatenates the lists containing x and y, and
- updates the *rep* pointers for all elements in the list containing y.



Example of augmented linked-list solution

Each element x_j stores pointer $rep[x_j]$ to $rep[S_i]$. UNION(x, y)

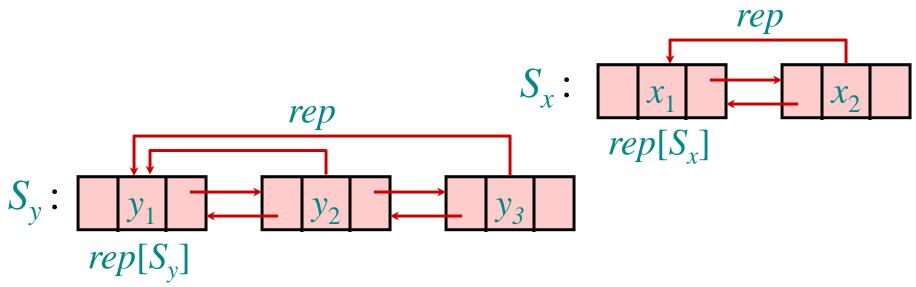
- concatenates the lists containing x and y, and
- updates the *rep* pointers for all elements in the list containing y.



Alternative concatenation

 $U_{NION}(x, y)$ could instead

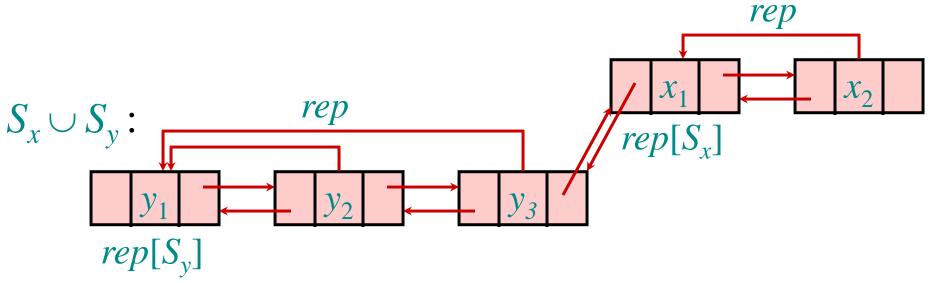
- concatenate the lists containing y and x, and
- update the *rep* pointers for all elements in the list containing *x*.



Alternative concatenation

 $U_{NION}(x, y)$ could instead

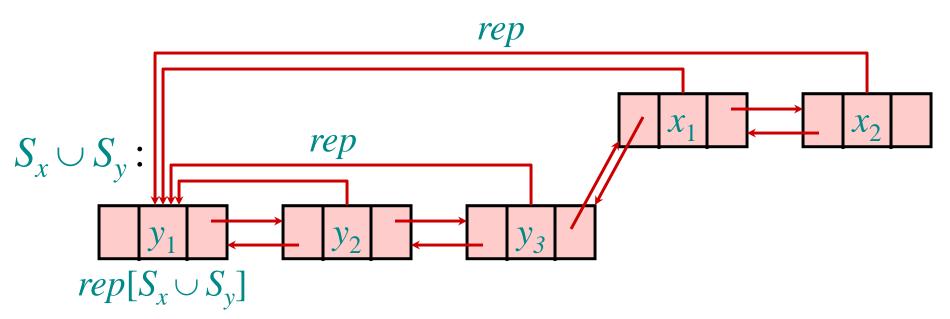
- concatenate the lists containing y and x, and
- update the *rep* pointers for all elements in the list containing *x*.



Alternative concatenation

UNION(x, y) could instead

- concatenate the lists containing y and x, and
- update the *rep* pointers for all elements in the list containing *x*.



Trick 1: Smaller into larger

(weighted-union heuristic)

To save work, concatenate the smaller list onto the end of the larger list. $Cost = \Theta(length \ of \ smaller \ list)$. Augment list to store its *weight* (# elements).

- Let *n* denote the overall number of elements (equivalently, the number of MAKE-SET operations).
- Let *m* denote the total number of operations.
- Let *f* denote the number of FIND-SET operations.

Theorem: Cost of all Union's is $O(n \log n)$.

Corollary: Total cost is $O(m + n \log n)$.

Analysis of Trick 1

(weighted-union heuristic)

Theorem: Total cost of Union's is $O(n \log n)$.

Proof. • Monitor an element x and set S_x containing it.

- After initial MAKE-SET(x), weight[S_x] = 1.
- Each time S_x is united with S_y :
 - if $weight[S_y] \ge weight[S_x]$:
 - pay 1 to update rep[x], and
 - $-weight[S_x]$ at least doubles (increases by $weight[S_y]$).
 - if $weight[S_y] < weight[S_x]$:
 - pay nothing, and
 - $-weight[S_x]$ only increases.

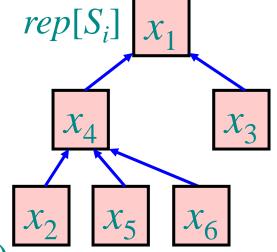
Thus pay $\leq \log n$ for x.

Disjoint set forest: Representing sets as trees

Store each set $S_i = \{x_1, x_2, ..., x_k\}$ as an unordered, potentially unbalanced, not necessarily binary tree, storing only *parent* pointers. $rep[S_i]$ is the tree root.

- Make-Set(x) initializes x as a lone node. $-\Theta(1)$
- FIND-SET(x) walks up the tree containing x until it reaches the root. $-\Theta(depth[x])$
- UNION(x, y) calls FIND-SET twice and concatenates the trees containing x and y...- $\Theta(depth[x])$

 $S_i = \{x_1, x_2, x_3, x_4, x_5, x_6\}$



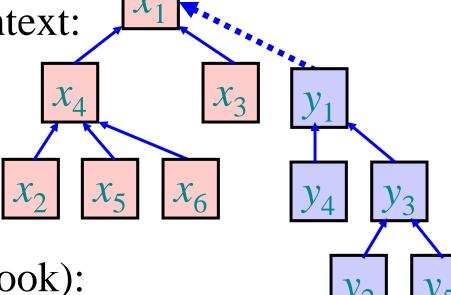
Trick 1 adapted to trees

• UNION(x, y) can use a simple concatenation strategy: Make root FIND-SET(y) a child of root FIND-SET(x).

Adapt Trick 1 to this context:

Union-by-weight:

Merge tree with smaller weight into tree with larger weight.



• Variant of Trick 1 (see book):

Union-by-rank:

rank of a tree = its height

Example: $UNION(x_4, y_2)$

Trick 1 adapted to trees (union-by-weight)

- Height of tree is logarithmic in weight, because:
 - Induction on *n*
 - Height of a tree T is determined by the two subtrees T_1 , T_2 that T has been united from.
 - Inductively the heights of T_1 , T_2 are the logs of their weights.
 - If T_1 and T_2 have different heights:

```
height(T) = max(height(T_1), height(T_2))
= max(log weight(T_1), log weight(T_2))
< log weight(T)
```

• If T_1 and T_2 have the same heights:

```
(Assume weight(T_1) \leq weight(T_2))
height(T) = height(T_1) + 1 = log (2*weight(T_1))
\leq log weight(T)
```

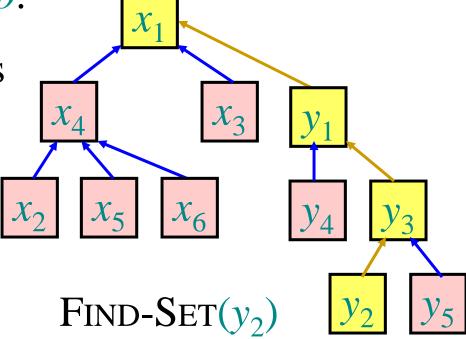
≤ log weight(T)
• Thus the total cost of any m operations is $O(m \log n)$.

CMPS 6610/4610 Algorithms

When we execute a FIND-SET operation and walk up a path p to the root, we know the representative for all the nodes on path p.

Path compression makes all of those nodes direct children of the root.

Cost of FIND-SET(x) is still $\Theta(depth[x])$.

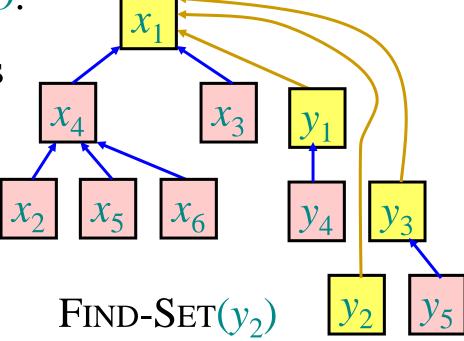


When we execute a FIND-SET operation and walk up a path p to the root, we know the representative for all the nodes on path p.

Path compression makes all of those nodes direct

children of the root.

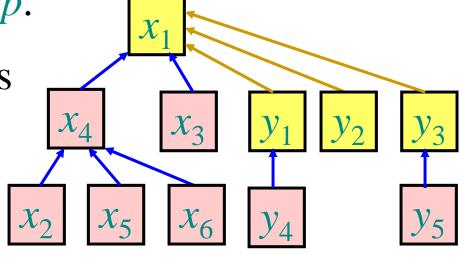
Cost of FIND-SET(x) is still $\Theta(depth[x])$.



When we execute a FIND-SET operation and walk up a path p to the root, we know the representative for all the nodes on path p.

Path compression makes all of those nodes direct children of the root.

Cost of FIND-SET(x) is still $\Theta(depth[x])$.



FIND-SET (y_2)

• Note that UNION(x,y) first calls FIND-SET(x) and FIND-SET(y). Therefore path compression also affects UNION operations.

Analysis of Trick 2 alone

Theorem: Total cost of FIND-SET's is $O(m \log n)$.

Proof: By amortization. Omitted.

Analysis of Tricks 1 + 2 for disjoint-set forests

Theorem: In general, total cost is $O(m \alpha(n))$.

Proof: Long, tricky proof by amortization. Omitted.

Ackermann's function A, and it's "inverse" α

Define
$$A_k(j) = \begin{cases} j+1 & \text{if } k = 0, \\ A_{k-1}^{(j+1)}(j) & \text{if } k \ge 1. \end{cases}$$
 — iterate $j+1$ times

$$A_{0}(j) = j + 1
A_{1}(j) \sim 2 j
A_{2}(j) \sim 2j 2^{j} > 2^{j}
A_{2}(1) = 7
A_{3}(1) = 2047
A_{3}(1) = 2047
A_{3}(1) = 2047
A_{4}(j) is a lot bigger. A_{4}(1) > 2$$

Define $\alpha(n) = \min \{k : A_k(1) \ge n\} \le 4 \text{ for practical } n.$ CMPS 6610/4610 Algorithms