CMPS 6610/4610 – Fall 2016

Minimum Spanning Trees Carola Wenk

Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

Minimum spanning trees

- **Input:** A connected, undirected graph G = (V, E) with weight function $w : E \to \mathbb{R}$.
- For simplicity, assume that all edge weights are distinct.

Output: A *spanning tree* T — a tree that connects all vertices — of minimum weight:

$$w(T) = \sum_{(u,v)\in T} w(u,v).$$

Example of MST

Growing an MST

Grow an MST by greedily adding one edge at a time.

```
Generic-Mst(G,w) \{ T \leftarrow \emptyset \\ while T does not form a spanning tree \{ // Maintain invariant that T is a subset of an MST for G \\ Find a "safe" edge {u,v} such that <math>T \cup \{ \{u,v\} \} is a subset of an MST for G T \leftarrow T \cup \{ \{u,v\} \} \}
```

Hallmark for "greedy" algorithms

Greedy-choice property A locally optimal choice is globally optimal.

Theorem [Cut property]. Let G = (V, E)and let $A \subseteq V$. Suppose that $\{u, v\} \in E$ is the least-weight edge connecting A to $V \setminus A$. Then, $\{u, v\}$ is contained in an MST T of G.

Proof of theorem

Proof. Suppose $\{u, v\} \notin T$. Cut and paste.

T: $0 \in A$ $U \setminus A$

Consider the unique simple path from u to v in T. Swap $\{u, v\}$ with the first edge on this path that connects a vertex in A to a vertex in $V \setminus A$.

Proof of theorem

Proof. Suppose $\{u, v\} \notin T$. Cut and paste.

Consider the unique simple path from u to v in T. Swap $\{u, v\}$ with the first edge on this path that connects a vertex in A to a vertex in $V \setminus A$.

A lighter-weight spanning tree than *T* results.

MST algorithms

- Prim's algorithm:
 - Maintains one tree
 - Runs in time $O(|E| \log |V|)$ with binary heaps, in time $O(|E| + |V| \log |V|)$, with Fibonacci heaps
- Kruskal's algorithm:
 - Maintains a forest and uses the disjoint-set data structure
 - Runs in time $O(|E| \log |E|)$

Prim's algorithm

IDEA: Maintain $V \setminus A$ as a priority queue Q. Key each vertex in Q with the weight of the least-weight edge connecting it to a vertex in A.

Dijkstra: $Q \leftarrow V$ while $Q \neq \emptyset$ do $key[v] \leftarrow \infty$ for all $v \in V$ $u \leftarrow \text{EXTRACT-MIN}(Q)$ $key[s] \leftarrow 0$ for some arbitrary $s \in V$ $S \leftarrow S \cup \{u\}$ while $Q \neq \emptyset$ for each $v \in Adj[u]$ do **do** $u \leftarrow \text{EXTRACT-MIN}(Q)$ **if** d[v] > d[u] + w(u, v) **then** $d[v] \leftarrow d[u] + w(u, v)$ for each $v \in Adj[u]$ **do if** $v \in Q$ and w(u, v) < key[v]► DECREASE-KEY then $key[v] \leftarrow w(u, v)$ $\pi[v] \leftarrow u$ At the end, $\{(v, \pi[v])\}$ forms the MST edges. CMPS 6610/4610 - Fall 2016 11

15

Analysis of Prim

Handshaking Lemma $\Rightarrow \Theta(|E|)$ implicit DECREASE-KEY's.

Time = $\Theta(|V|) \cdot T_{\text{EXTRACT-MIN}} + \Theta(|E|) \cdot T_{\text{DECREASE-KEY}}$

Analysis of Prim (continued)

Time = $\Theta(|V|) \cdot T_{\text{EXTRACT-MIN}} + \Theta(|E|) \cdot T_{\text{DECREASE-KEY}}$

<i>Q</i>	T _{EXTRACT-MIN}	T _{DECREASE-K}	EY Total
array	<i>O</i> (<i>V</i> /)	<i>O</i> (1)	<i>O</i> (<i>V</i> / ²)
binary heap	<i>O</i> (log <i>V</i> /)	<i>O</i> (log <i>V</i> /)	$O(E/\log V/)$
Fibonacc: heap	i O(log V/) amortized	<i>O</i> (1) <i>O</i> amortized	$P(E + V \log V)$ worst case

Kruskal's algorithm

IDEA (again greedy):

Repeatedly pick edge with smallest weight as long as it does not form a cycle.

- The algorithm creates a set of trees (a **forest**)
- During the algorithm the added edges merge the trees together, such that in the end only one tree remains

Every node is a single tree.

Edge 3 merged two singleton trees.

Edge 8 merged the two bigger trees.

Skip edge 10 as it would cause a cycle.

Skip edge 12 as it would cause a cycle.

Skip edge 14 as it would cause a cycle.

Kruskal's algorithm

IDEA (again greedy):

Repeatedly pick edge with smallest weight as long as it does not form a cycle.

- The algorithm creates a set of trees (a **forest**)
- During the algorithm the added edges merge the trees together, such that in the end only one tree remains

• Correctness: Next edge e connects two components A_1, A_2 . It is the lightest edge which does not produce a cycle, hence it is also the lightest edge between A_1 and $V \setminus A_1$ and therefore satisfies the cut property.

Disjoint-set data structure (Union-Find)

- Maintains a dynamic collection of *pairwise-disjoint* sets $S = \{S_1, S_2, ..., S_r\}$.
- Each set S_i has one element distinguished as the **representative** element.
- Supports operations:
- O(1) MAKE-SET(x): adds new set {x} to S
- $O(\alpha(n)) \bullet \text{UNION}(x, y)$: replaces sets S_x , S_y with $S_x \cup S_y$ $O(\alpha(n)) \bullet \text{FIND-SET}(x)$: returns the representative of the set S_x containing element x
- $1 < \alpha(n) < \log^*(n) < \log(\log(n)) < \log(n)$

Union-Find Example

MAKE-SET(2)MAKE-SET(3)MAKE-SET(4)FIND-SET(4) = 4UNION(2, 4)FIND-SET(4) = 2MAKE-SET(5)UNION(4, 5)

- $S = \{ \}$ The representative is underlined $S = \{ \{2\} \}$ $S = \{ \{2\}, \{3\} \}$ $S = \{ \{2\}, \{3\}, \{4\} \}$
- $S = \{ \{\underline{2}, 4\}, \{\underline{3}\} \}$
- $S = \{ \{\underline{2}, 4\}, \{\underline{3}\}, \{\underline{5}\} \}$ $S = \{ \{\underline{2}, 4, 5\}, \{\underline{3}\} \}$

Kruskal's algorithm

IDEA: Repeatedly pick edge with smallest weight as long as it does not form a cycle.

 $S \leftarrow \emptyset \triangleright S$ will contain all MST edges O(|V|) for each $v \in V$ do MAKE-SET(v) $O(|E|\log|E|)$ Sort edges of E in non-decreasing order according to w

 $O(|E|) \quad \text{For each } (u,v) \in E \text{ taken in this order do}$ $O(\alpha(|V|)) \begin{cases} \text{if FIND-SET}(u) \neq \text{FIND-SET}(v) \triangleright u,v \text{ in different trees} \\ S \leftarrow S \cup \{(u,v)\} \\ U\text{NION}(u,v) \triangleright \text{Edge } (u,v) \text{ connects the two trees} \end{cases}$

Runtime: $O(|V|+|E|\log|E|+|E|\alpha(|V|)) = O(|E|\log|E|)$

MST algorithms

- Prim's algorithm:
 - Maintains one tree
 - Runs in time $O(|E| \log |V|)$, with binary heaps.
- Kruskal's algorithm:
 - Maintains a forest and uses the disjoint-set data structure
 - Runs in time $O(|E| \log |E|)$
- Best to date: Randomized algorithm by Karger, Klein, Tarjan [1993]. Runs in expected time O(|V| + |E|)