
CMPS 6610/4610 – Fall 2016 1

CMPS 6610/4610 – Fall 2016

Minimum Spanning Trees
Carola Wenk

Slides courtesy of Charles Leiserson with
changes and additions by Carola Wenk

CMPS 6610/4610 – Fall 2016 2

Minimum spanning trees

Input: A connected, undirected graph G = (V, E)
with weight function w : E  R.
• For simplicity, assume that all edge weights are

distinct.





Tvu

vuwTw
),(

),()(.

Output: A spanning tree T — a tree that connects
all vertices — of minimum weight:

CMPS 6610/4610 – Fall 2016 3

Example of MST

6 12
5

14

3

8

10

15

9

7

CMPS 6610/4610 – Fall 2016 4

Growing an MST
Grow an MST by greedily adding one edge at a time.

GENERIC-MST(G,w){
T 
while T does not form a spanning tree {

// Maintain invariant that T is a subset of an MST for G

Find a “safe” edge {u,v} such that T{{u,v}} is a subset
of an MST for G
T  T {{u,v}}

}
return A

}

CMPS 6610/4610 – Fall 2016 5

Hallmark for “greedy”
algorithms

Greedy-choice property
A locally optimal choice

is globally optimal.

Theorem [Cut property]. Let G = (V, E)
and let A  V. Suppose that {u, v}  E is
the least-weight edge connecting A to V \ A.
Then, {u, v} is contained in an MST T of G.

CMPS 6610/4610 – Fall 2016 6

Proof of theorem
Proof. Suppose {u, v}  T. Cut and paste.

 A
 V \ A

T:

u

v

{u, v} = least-weight
edge connecting A to V \
A

CMPS 6610/4610 – Fall 2016 7

Proof of theorem
Proof. Suppose {u, v}  T. Cut and paste.

 A
 V \ A

T:

u

Consider the unique simple path from u to v in T.

{u, v} = least-weight
edge connecting A to V \
A

v

CMPS 6610/4610 – Fall 2016 8

Proof of theorem
Proof. Suppose {u, v}  T. Cut and paste.

 A
 V \ A

T:

u
{u, v} = least-weight edge
connecting A to V \ A

v

Consider the unique simple path from u to v in T.
Swap {u, v} with the first edge on this path that
connects a vertex in A to a vertex in V \ A.

CMPS 6610/4610 – Fall 2016 9

Proof of theorem
Proof. Suppose {u, v}  T. Cut and paste.

 A
 V \ A

T :

u
{u, v} = least-weight edge
connecting A to V \ A

v

Consider the unique simple path from u to v in T.
Swap {u, v} with the first edge on this path that
connects a vertex in A to a vertex in V \ A.
A lighter-weight spanning tree than T results.

CMPS 6610/4610 – Fall 2016 10

MST algorithms

• Prim’s algorithm:
• Maintains one tree
• Runs in time O(|E| log |V|) with binary heaps,
in time O(|E| + |V| log |V|), with Fibonacci heaps

• Kruskal’s algorithm:
• Maintains a forest and uses the disjoint-set

data structure
• Runs in time O(|E| log |E|)

CMPS 6610/4610 – Fall 2016 11

Prim’s algorithm
IDEA: Maintain V \ A as a priority queue Q. Key
each vertex in Q with the weight of the least-
weight edge connecting it to a vertex in A.
Q  V
key[v]  for all v  V
key[s]  0 for some arbitrary s  V
while Q  

do u  EXTRACT-MIN(Q)
for each v  Adj[u]

do if v  Q and w(u, v) < key[v]
then key[v]  w(u, v) DECREASE-KEY

[v]  u

At the end, {(v, [v])} forms the MST edges.

Dijkstra:
while Q   do

u  EXTRACT-MIN(Q)
S  S  {u}
for each v  Adj[u] do

if d[v] > d[u] + w(u, v) then
d[v]  d[u] + w(u, v)

CMPS 6610/4610 – Fall 2016 12

Example of Prim’s algorithm

 A
 V \ A



 

 0







6 12
5

14

3

8

10

15

9

7

u  EXTRACT-MIN(Q)
for each v  Adj[u]

do if v  Q and w(u, v) < key[v]
then key[v]  w(u, v)⊳ DECREASE-KEY

[v]  u

CMPS 6610/4610 – Fall 2016 13

Example of Prim’s algorithm

 A
 V \ A



 

 0







6 12
5

14

3

8

10

15

9

7

u  EXTRACT-MIN(Q)
for each v  Adj[u]

do if v  Q and w(u, v) < key[v]
then key[v]  w(u, v)⊳ DECREASE-KEY

[v]  u

CMPS 6610/4610 – Fall 2016 14

Example of Prim’s algorithm

 A
 V \ A



 

 0







6 12
5

14

3

8

10

15

9

7

u  EXTRACT-MIN(Q)
for each v  Adj[u]

do if v  Q and w(u, v) < key[v]
then key[v]  w(u, v)⊳ DECREASE-KEY

[v]  u

CMPS 6610/4610 – Fall 2016 15

Example of Prim’s algorithm

 A
 V \ A



 

 0







6 12
5

14

3

8

10

15

9

7

u  EXTRACT-MIN(Q)
for each v  Adj[u]

do if v  Q and w(u, v) < key[v]
then key[v]  w(u, v)⊳ DECREASE-KEY

[v]  u

CMPS 6610/4610 – Fall 2016 16

Example of Prim’s algorithm

 A
 V \ A



 

 0







6 12
5

14

3

8

10

15

9

7

u  EXTRACT-MIN(Q)
for each v  Adj[u]

do if v  Q and w(u, v) < key[v]
then key[v]  w(u, v)⊳ DECREASE-KEY

[v]  u

CMPS 6610/4610 – Fall 2016 17

Example of Prim’s algorithm

 A
 V \ A



 

 0







6 12
5

14

3

8

10

15

9

7

u  EXTRACT-MIN(Q)
for each v  Adj[u]

do if v  Q and w(u, v) < key[v]
then key[v]  w(u, v)⊳ DECREASE-KEY

[v]  u

CMPS 6610/4610 – Fall 2016 18

Example of Prim’s algorithm

 A
 V \ A



 

 0







6 12
5

14

3

8

10

15

9

7

u  EXTRACT-MIN(Q)
for each v  Adj[u]

do if v  Q and w(u, v) < key[v]
then key[v]  w(u, v)⊳ DECREASE-KEY

[v]  u

CMPS 6610/4610 – Fall 2016 19

Example of Prim’s algorithm

 A
 V \ A



 

 0







6 12
5

14

3

8

10

15

9

7

u  EXTRACT-MIN(Q)
for each v  Adj[u]

do if v  Q and w(u, v) < key[v]
then key[v]  w(u, v)⊳ DECREASE-KEY

[v]  u

CMPS 6610/4610 – Fall 2016 20

Example of Prim’s algorithm

 A
 V \ A



 

 0







6 12
5

14

3

8

10

15

9

7

u  EXTRACT-MIN(Q)
for each v  Adj[u]

do if v  Q and w(u, v) < key[v]
then key[v]  w(u, v)⊳ DECREASE-KEY

[v]  u

CMPS 6610/4610 – Fall 2016 21

Example of Prim’s algorithm

 A
 V \ A



 

 0







6 12
5

14

3

8

10

15

9

7

u  EXTRACT-MIN(Q)
for each v  Adj[u]

do if v  Q and w(u, v) < key[v]
then key[v]  w(u, v)⊳ DECREASE-KEY

[v]  u

CMPS 6610/4610 – Fall 2016 22

Example of Prim’s algorithm

 A
 V \ A



 

 0







6 12
5

14

3

8

10

15

9

7

u  EXTRACT-MIN(Q)
for each v  Adj[u]

do if v  Q and w(u, v) < key[v]
then key[v]  w(u, v)⊳ DECREASE-KEY

[v]  u

CMPS 6610/4610 – Fall 2016 23

Example of Prim’s algorithm

 A
 V \ A



 

 0







6 12
5

14

3

8

10

15

9

7

u  EXTRACT-MIN(Q)
for each v  Adj[u]

do if v  Q and w(u, v) < key[v]
then key[v]  w(u, v)⊳ DECREASE-KEY

[v]  u

CMPS 6610/4610 – Fall 2016 24

Example of Prim’s algorithm

 A
 V \ A



 

 0







6 12
5

14

3

8

10

15

9

7

u  EXTRACT-MIN(Q)
for each v  Adj[u]

do if v  Q and w(u, v) < key[v]
then key[v]  w(u, v)⊳ DECREASE-KEY

[v]  u

CMPS 6610/4610 – Fall 2016 25

Handshaking Lemma (|E|) implicit DECREASE-KEY’s.

Q  V
key[v]  for all v  V
key[s]  0 for some arbitrary s  V
while Q  

do u  EXTRACT-MIN(Q)
for each v  Adj[u]

do if v  Q and w(u, v) < key[v]
then key[v]  w(u, v)

[v]  u

Analysis of Prim

degree(u)
times

|V |
times

(|V|)
total

Time = (|V|)·TEXTRACT-MIN + (|E|)·TDECREASE-KEY

CMPS 6610/4610 – Fall 2016 26

Analysis of Prim (continued)

Time = (|V|)·TEXTRACT-MIN + (|E|)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

array O(|V|) O(1) O(|V|2)
binary
heap O(log |V|) O(log |V|) O(|E| log |V|)

Fibonacci
heap

O(log |V|)
amortized

O(1)
amortized

O(|E| + |V| log |V|)
worst case

CMPS 6610/4610 – Fall 2016 27

Kruskal’s algorithm
IDEA (again greedy):
Repeatedly pick edge with smallest weight as long as it
does not form a cycle.

• The algorithm creates a set of trees (a forest)
• During the algorithm the added edges merge the trees
together, such that in the end only one tree remains

CMPS 6610/4610 – Fall 2016 28

Example of Kruskal’s algorithm

a

b c

e f

h

d

g

6 12
5

14

3

8

10

15

9

7

MST edges

Every node is a single tree.

S={ {a},{b},{c},{d},{e}
{f},{g},{h} }

a set repr.

CMPS 6610/4610 – Fall 2016 29

Example of Kruskal’s algorithm

a

b c

e f

h

d

g

6 12
5

14

3

8

10

15

9

7

MST edges

Edge 3 merged two singleton trees.

S={ {a},{b},{c},{d},{f}
{g}, {e, h} }

a set repr.

CMPS 6610/4610 – Fall 2016 30

Example of Kruskal’s algorithm

a

b c

e f

h

d

g

6 12
5

14

3

8

10

15

9

7

MST edges
S={ {a},{d},{f}, {g}

{e, h}, {b, c} }
a set repr.

CMPS 6610/4610 – Fall 2016 31

Example of Kruskal’s algorithm

a

b c

e f

h

d

g

6 12
5

14

3

8

10

15

9

7

MST edges
S={ {d},{f}, {g}

{e, h}, {a, b, c} }
a set repr.

CMPS 6610/4610 – Fall 2016 32

Example of Kruskal’s algorithm

a

b c

e f

h

d

g

6 12
5

14

3

8

10

15

9

7

MST edges
S={ {d}, {g}

{e, h}, {a, b, c, f} }
a set repr.

CMPS 6610/4610 – Fall 2016 33

Example of Kruskal’s algorithm

a

b c

e f

h

d

g

6 12
5

14

3

8

10

15

9

7

MST edges
S={ {d}, {g}

{e, h, a, b, c, f} }

Edge 8 merged the two bigger trees.

a set repr.

CMPS 6610/4610 – Fall 2016 34

Example of Kruskal’s algorithm

a

b c

e f

h

d

g

6 12
5

14

3

8

10

15

9

7

MST edges
S={ {g}

{e, h, a, b, c, f, d} }
a set repr.

CMPS 6610/4610 – Fall 2016 35

Example of Kruskal’s algorithm

a

b c

e f

h

d

g

6 12
5

14

3

8

10

15

9

7

MST edges

Skip edge 10 as it would cause a cycle.

S={ {g}
{e, h, a, b, c, f, d} }

a set repr.

CMPS 6610/4610 – Fall 2016 36

Example of Kruskal’s algorithm

a

b c

e f

h

d

g

6 12
5

14

3

8

10

15

9

7

MST edges

Skip edge 12 as it would cause a cycle.

S={ {g}
{e, h, a, b, c, f, d} }

a set repr.

CMPS 6610/4610 – Fall 2016 37

Example of Kruskal’s algorithm

a

b c

e f

h

d

g

6 12
5

14

3

8

10

15

9

7

MST edges

Skip edge 14 as it would cause a cycle.

S={ {g}
{e, h, a, b, c, f, d} }

a set repr.

CMPS 6610/4610 – Fall 2016 38

Example of Kruskal’s algorithm

a

b c

e f

h

d

g

6 12
5

14

3

8

10

15

9

7

MST edges
S={{e, h, a, b, c, f, d, g} }

a set repr.

CMPS 6610/4610 – Fall 2016 39

Kruskal’s algorithm
IDEA (again greedy):
Repeatedly pick edge with smallest weight as long as it
does not form a cycle.

• The algorithm creates a set of trees (a forest)
• During the algorithm the added edges merge the trees
together, such that in the end only one tree remains

• Correctness: Next edge e connects two components
A1, A2. It is the lightest edge which does not produce a
cycle, hence it is also the lightest edge between A1 and
V \ A1 and therefore satisfies the cut property.

CMPS 6610/4610 – Fall 2016 40

Disjoint-set data structure
(Union-Find)

• Maintains a dynamic collection of pairwise-disjoint
sets S = {S1, S2, …, Sr}.

• Each set Si has one element distinguished as the
representative element.

• Supports operations:
• MAKE-SET(x): adds new set {x} to S
• UNION(x, y): replaces sets Sx, Sy with Sx  Sy
• FIND-SET(x): returns the representative of the

set Sx containing element x
• 1 < (n) < log*(n) < log(log(n)) < log(n)

O(1)
O((n))
O((n))

CMPS 6610/4610 – Fall 2016 41

Union-Find Example

MAKE-SET(2)

UNION(2, 4)
FIND-SET(4) = 4

S = {}
S = {{2}}

MAKE-SET(3) S = {{2}, {3}}
MAKE-SET(4) S = {{2}, {3}, {4}}

S = {{2, 4}, {3}}
FIND-SET(4) = 2
MAKE-SET(5) S = {{2, 4}, {3}, {5}}
UNION(4, 5) S = {{2, 4, 5}, {3}}

The representative is
underlined

CMPS 6610/4610 – Fall 2016 42

Kruskal’s algorithm
IDEA: Repeatedly pick edge with smallest
weight as long as it does not form a cycle.

S  S will contain all MST edges
for each v V do MAKE-SET(v)
Sort edges of E in non-decreasing order according to w
For each (u,v) E taken in this order do

if FIND-SET(u)  FIND-SET(v) ⊳ u,v in different trees
S  S  {(u,v)}
UNION(u,v) ⊳ Edge (u,v) connects the two trees

O(|V|)
O(|E|log|E|)

O((|V|))

O(|E|

Runtime: O(|V|+|E|log|E|+|E|(|V|)) = O(|E| log |E|)

CMPS 6610/4610 – Fall 2016 43

MST algorithms

• Prim’s algorithm:
• Maintains one tree
• Runs in time O(|E| log |V|), with binary heaps.

• Kruskal’s algorithm:
• Maintains a forest and uses the disjoint-set

data structure
• Runs in time O(|E| log |E|)

• Best to date: Randomized algorithm by Karger,
Klein, Tarjan [1993]. Runs in expected time

O(|V| + |E|)

