CMPS 6610/4610 - Fall 2016

Minimum Spanning Trees Carola Wenk

Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

Minimum spanning trees

Input: A connected, undirected graph $G=(V, E)$ with weight function $w: E \rightarrow \mathrm{R}$.

- For simplicity, assume that all edge weights are distinct.

Output: A spanning tree T - a tree that connects all vertices - of minimum weight:

$$
w(T)=\sum_{(u, v) \in T} w(u, v) .
$$

Example of MST

CMPS 6610/4610 - Fall 2016

Growing an MST

Grow an MST by greedily adding one edge at a time.

```
GEnERIc-Mst(G,w){
    T}\leftarrow
    while T does not form a spanning tree {
        // Maintain invariant that T is a subset of an MST for G
            Find a "safe" edge {u,v} such that T\cup{{u,v}} is a subset
            of an MST for G
            T}\leftarrow\textrm{T}\cup{{u,v}
    }
    return A
}
```


Hallmark for "greedy" algorithms

Theorem [Cut property]. Let $G=(V, E)$ and let $A \subseteq V$. Suppose that $\{u, v\} \in E$ is the least-weight edge connecting A to $V \backslash A$. Then, $\{u, v\}$ is contained in an MST T of G.

Proof of theorem

Proof. Suppose $\{u, v\} \notin T$. Cut and paste.

Proof of theorem

Proof. Suppose $\{u, v\} \notin T$. Cut and paste.
$0 \in A$

- $\in V \backslash A$

T:
edge connecting A to V
Consider the unique simple path from u to v in T.

Proof of theorem

Proof. Suppose $\{u, v\} \notin T$. Cut and paste.
T :
$0 \in A$

- $\in V \backslash A$
$\{u, v\}=$ least-weight edge connecting A to $V \backslash A$
Consider the unique simple path from u to v in T.
Swap $\{u, v\}$ with the first edge on this path that connects a vertex in A to a vertex in $V \backslash A$.

Proof of theorem

Proof. Suppose $\{u, v\} \notin T$. Cut and paste.
T^{\prime} :
$0 \in A$

- $\in V \backslash A$
$\{u, v\}=$ least-weight edge connecting A to $V \backslash A$
Consider the unique simple path from u to v in T.
Swap $\{u, v\}$ with the first edge on this path that connects a vertex in A to a vertex in $V \backslash A$.

A lighter-weight spanning tree than T results. \square

MST algorithms

- Prim's algorithm:
- Maintains one tree
- Runs in time $O(|E| \log |V|)$ with binary heaps, in time $O(|E|+|V| \log |V|)$, with Fibonacci heaps
- Kruskal's algorithm:
- Maintains a forest and uses the disjoint-set data structure
- Runs in time $O(|E| \log |E|)$

Prim's algorithm

Idea: Maintain $V \backslash A$ as a priority queue Q. Key each vertex in Q with the weight of the leastweight edge connecting it to a vertex in A. $Q \leftarrow V$
$k e y[v] \leftarrow \infty$ for all $v \in V$
$k e y[s] \leftarrow 0$ for some arbitrary $s \in V$
while $Q \neq \varnothing$
do $u \leftarrow \operatorname{Extract-Min}(Q)$
for each $v \in \operatorname{Adj}[u]$

```
Dijkstra:
while Q\not=\varnothing do
    u\leftarrow EXtRACT-Min}(Q
    S\leftarrowS\cup{u}
    for each v}\in\operatorname{Adj[u] do
    if d[v]>d[u]+w(u,v) then
        d[v]}\leftarrowd[u]+w(u,v
```

 do if \(v \in Q\) and \(w(u, v)<k e y[v]\)
 then \(k e y[v] \leftarrow w(u, v) \quad \triangleright\) DECREASE-KEY
 \(\pi[v] \leftarrow u\)
 At the end, $\{(v, \pi[v])\}$ forms the MST edges.

Example of Prim's algorithm

Analysis of Prim

Handshaking Lemma $\Rightarrow \Theta(|E|)$ implicit Decrease-Key’s.
Time $=\Theta(|V|) \cdot T_{\text {Extract-Min }}+\Theta(|E|) \cdot T_{\text {Decrease-Key }}$

Analysis of Prim (continued)

Time $=\Theta(|V|) \cdot T_{\text {EXtract-Min }}+\Theta(|E|) \cdot T_{\text {Decrease-Key }}$

Q $\quad T_{\text {EXtract-Min }} \quad T_{\text {Decrease-Key }} \quad$ Total

array
$O(|V|)$
$O(1)$
$O\left(|V|^{2}\right)$
binary
heap

$$
O(\log |V|) \quad O(\log |V|) \quad O(|E| \log |V|)
$$

Fibonacci $O(\log |V|)$
heap amortized
$O(1) \quad O(|E|+|V| \log |V|)$
amortized worst case

Kruskal's algorithm

IDEA (again greedy):
Repeatedly pick edge with smallest weight as long as it does not form a cycle.

- The algorithm creates a set of trees (a forest)
- During the algorithm the added edges merge the trees together, such that in the end only one tree remains

Example of Kruskal's algorithm

Every node is a single tree.

Example of Kruskal's algorithm

Edge 3 merged two singleton trees.

Example of Kruskal's algorithm

Edge 8 merged the two bigger trees.

Example of Kruskal's algorithm

Example of Kruskal's algorithm

Skip edge 10 as it would cause a cycle.

Example of Kruskal's algorithm

Skip edge 12 as it would cause a cycle.

Example of Kruskal's algorithm

Skip edge 14 as it would cause a cycle.

Example of Kruskal's algorithm

Kruskal's algorithm

IDEA (again greedy):
Repeatedly pick edge with smallest weight as long as it does not form a cycle.

- The algorithm creates a set of trees (a forest)
- During the algorithm the added edges merge the trees together, such that in the end only one tree remains
- Correctness: Next edge e connects two components A_{1}, A_{2}. It is the lightest edge which does not produce a cycle, hence it is also the lightest edge between A_{1} and $\mathrm{V} \backslash \mathrm{A}_{1}$ and therefore satisfies the cut property.

Disjoint-set data structure (Union-Find)

- Maintains a dynamic collection of pairwise-disjoint sets $\mathrm{S}=\left\{S_{1}, S_{2}, \ldots, S_{r}\right\}$.
- Each set S_{i} has one element distinguished as the representative element.
- Supports operations:
$O(1) \cdot \operatorname{MaKe}-\operatorname{Set}(x)$: adds new set $\{x\}$ to S
$O(\alpha(n)) \cdot \operatorname{Union}(x, y)$: replaces sets S_{x}, S_{y} with $S_{x} \cup S_{y}$
$O(\alpha(n)) \cdot \operatorname{FIND}-\operatorname{SET}(x)$: returns the representative of the set S_{x} containing element x
- $1<\alpha(n)<\log ^{*}(n)<\log (\log (n))<\log (n)$

Union-Find Example

Make-Set(2)
Make-Set(3)
Make-Set(4)
Find-Set(4) $=4$
Union(2, 4)
Find-Set(4) = 2
Make-Set(5)
Union(4, 5)

$$
S=\{ \} \quad \begin{gathered}
\text { The representative is } \\
\text { underlined }
\end{gathered}
$$

$$
S=\{\{\underline{2}\}\}
$$

$$
S=\{\{\underline{2}\},\{\underline{3}\}\}
$$

$$
S=\{\{\underline{2}\},\{\underline{3}\},\{\underline{4}\}\}
$$

$$
S=\{\{\underline{2}, 4\},\{\underline{3}\}\}
$$

$$
\begin{aligned}
& S=\{\{\underline{2}, 4\},\{\underline{3}\},\{\underline{5}\}\} \\
& S=\{\{\underline{2}, 4,5\},\{\underline{3}\}\}
\end{aligned}
$$

Kruskal's algorithm

Idea: Repeatedly pick edge with smallest weight as long as it does not form a cycle.
$S \leftarrow \varnothing \quad \triangleright S$ will contain all MST edges
$O(|V|) \quad$ for each $v \in \mathrm{~V}$ do MAKE-SET(v)
$O(|E| \log |E|)$ Sort edges of E in non-decreasing order according to w
$O(|E|) \quad$ For each $(u, v) \in E$ taken in this order do
$O(\alpha(|\mathrm{~V}|))\left\{\begin{array}{c}\text { if } \operatorname{Find}-\operatorname{SET}(u) \neq \operatorname{FIND}-\operatorname{SET}(v) \triangleright u, v \text { in different trees } \\ S \leftarrow S \cup\{(u, v)\} \\ \operatorname{UnION}(u, v) \triangleright \text { Edge }(u, v) \text { connects the two trees }\end{array}\right.$
Runtime: $O(|\mathrm{~V}|+|E| \log |E|+|E| \alpha(|V|))=\mathrm{O}(|E| \log |E|)$

MST algorithms

- Prim's algorithm:
- Maintains one tree
- Runs in time $O(|E| \log |V|)$, with binary heaps.
- Kruskal's algorithm:
- Maintains a forest and uses the disjoint-set data structure
- Runs in time $O(|E| \log |E|)$
- Best to date: Randomized algorithm by Karger, Klein, Tarjan [1993]. Runs in expected time $O(|V|+|E|)$

