CMPS 6610/4610 - Fall 2016

Graphs
 Carola Wenk

Slides courtesy of Charles Leiserson with changes and additions
 by Carola Wenk

Graphs

Definition. A directed graph (digraph) $G=(V$,
$E)$ is an ordered pair consisting of

- a set V of vertices (singular: vertex),
- a set $E \subseteq V \times V$ of edges.

In an undirected graph $G=(V, E)$, the edge set E consists of unordered pairs of vertices.

undirected graph

In either case, we have $|E|=O\left(|V|^{2}\right)$. Moreover, if G is connected, then $|E| \geq|V|-1$.

Adjacency-matrix representation

The adjacency matrix of a graph $G=(V, E)$, where $V=\{1,2, \ldots, n\}$, is the matrix $A[1 \ldots n, 1 \ldots n]$ given by

$$
A[i, j]= \begin{cases}1 & \text { if }(i, j) \in \mathrm{E}, \\ 0 & \text { if }(i, j) \notin \mathrm{E} .\end{cases}
$$

$\Theta\left(|V|^{2}\right)$ storage
\Rightarrow dense
representation.

CMPS 6610/4610 - Fall 2016

Adjacency-list representation

An adjacency list of a vertex $v \in V$ is the list $\operatorname{Adj}[v]$ of vertices adjacent to v.

$$
\begin{aligned}
& \operatorname{Adj}[1]=\{2,3\} \\
& \operatorname{Adj}[2]=\{3\} \\
& \operatorname{Adj}[3]=\{ \} \\
& \operatorname{Adj}[4]=\{3,4\}
\end{aligned}
$$

For undirected graphs, $|\operatorname{Adj}[v]|=\operatorname{degree}(v)$.
For digraphs, $|\operatorname{Adj}[v]|=$ out-degree(v).

Adjacency-list representation

Handshaking Lemma:

Every edge is counted twice

- For undirected graphs:

$$
\sum_{v \in V} \text { degree }(v)=2|E|
$$

- For digraphs:

$$
\sum_{v \in V} \text { in-degree }(v)=\sum_{v \in V} \text { out-degree }(v)=|E|
$$

\Rightarrow adjacency lists use $\Theta(|V|+|E|)$ storage
\Rightarrow a sparse representation
\Rightarrow We usually use this representation, unless stated otherwise

Graph Traversal

Let $G=(V, E)$ be a (directed or undirected) graph, given in adjacency list representation.
$|V|=n,|E|=m$
A graph traversal visits every vertex:

- Breadth-first search (BFS)
- Depth-first search (DFS)

Breadth-First Search (BFS)

$\operatorname{BFS}(G=(V, E))$

Mark all vertices in G as "unvisited" // time=0 Initialize empty queue Q
for each vertex $v \in V$ do
if v is unvisited visit v // time++ Q.enqueue(v) BFS_iter(G)

BFS_iter(G)
while Q is non-empty do

$$
v=Q . \text { dequeue() }
$$

for each w adjacent to v do if w is unvisited visit w // time++ Add edge (v, w) to T Q.enqueue(w)

\section*{Example of breadth-first} search while | is non enpyy do |
| :---: |
| $v=0$. dequevere | for each w adjacent to v do if w is unvisited

Q:

\section*{Example of breadth-first} search while | is nonenenpy do do |
| :---: |
| $v=Q$. dequevere |

for each w adjacent to v do
if w is unvisited

\section*{Example of breadth-first} search \quad| while Q is non-empty |
| :---: |
| $v=Q$. do $q u e u e v e$ | for each w adjacent to v do if w is unvisited

\section*{Example of breadth-first} search while | is nonenenpy do do |
| :---: |
| $v=Q$. dequevere | for each w adjacent to v do if w is unvisited

\section*{Example of breadth-first} search while | is nonenenpy do do |
| :---: |
| $v=Q$. dequevere | for each w adjacent to v do if w is unvisited

\section*{Example of breadth-first} search while | is nonenempy do |
| :---: |
| $\left.v=Q . Q_{\text {dequevee }}\right)$ |

for each w adjacent to v do
if w is unvisited

Q: $a b d \subset e$

\section*{Example of breadth-first} search \quad| while Q is non-empty |
| :---: |
| $v=Q$. do |
| $\substack{\text { deveue }}$ | for each w adjacent to v do if w is unvisited

Example of breadth-first

 searchwhile Q is non-empty do $v=Q$. dequeue() for each w adjacent to v do

Example of breadth-first

 searchwhile Q is non-empty do
$v=Q$. dequeue()
for each w adjacent to v do

Example of breadth-first

 searchwhile Q is non-empty do
$v=Q$. dequeue()

Example of breadth-first

 searchwhile Q is non-empty do
$v=Q$. dequeue()
for each w adjacent to v do

Q: a bdcefgih

Example of breadth-first search

Distance
to a :

Q: a b d cefgih

Breadth-First Search (BFS)

BFS runtime

- Each vertex is marked as unvisited in the beginning $\Rightarrow \mathrm{O}(n)$ time
- Each vertex is marked at most once, enqueued at most once, and therefore dequeued at most once
- The time to process a vertex is proportional to the size of its adjacency list (its degree), since the graph is given in adjacency list representation
$\Rightarrow \mathrm{O}(\mathrm{m})$ time
- Total runtime is $\mathrm{O}(n+m)=\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$

Depth-First Search (DFS)

$\operatorname{DFS}(G=(V, E))$
Mark all vertices in G as "unvisited" // time=0 for each vertex $v \in V$ do if v is unvisited

DFS_rec (G,v)
DFS_rec (G, v)
mark v as "visited" // d[v]=++time
for each w adjacent to v do
if w is unvisited
Add edge (v, w) to tree T
DFS_rec (G, w)
mark v as "finished" // f[v]=++time

Example of depth-first search

Store edges in predecessor array

Example of depth-first search

$\pi: \frac{\mathrm{abbc} \text { d e f g h i }}{-\mathrm{a} \mathrm{b}}$
Store edges in predecessor array

DFS_rec (G, v)
mark v as "visited" // d[v]=++time for each w adjacent to v do
if w is unvisited
Add edge (v, w) to tree T
DFS_rec (G, w)
mark v as "finished" // flv]=++time

Example of depth-first search

$\pi: \frac{\mathrm{abbc} \text { d e f g h i }}{-\mathrm{a} \mathrm{b}}$
Store edges in predecessor array

Example of depth-first search

$\pi: \frac{\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g} \mathrm{h} \mathrm{i}}{-\mathrm{a} \mathrm{b} \mathrm{b}}$
Store edges in predecessor array

Example of depth-first search

$\pi: \frac{\mathrm{abbcdefgh} \text { d }}{-\mathrm{a} \mathrm{b} \mathrm{b} \mathrm{e}}$
Store edges in predecessor array

Example of depth-first search

$\pi: \frac{\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \mathrm{f} \mathrm{g} \mathrm{h} \mathrm{i}}{-\mathrm{a} \mathrm{b} \mathrm{bef}}$
Store edges in predecessor array

DFS_rec (G, v)
mark v as "visited" // d[v]=++time for each w adjacent to v do
if w is unvisited
Add edge (v, w) to tree T
DFS_rec (G,w)
mark v as "finished" // $f[v]=++$ time

Example of depth-first search

Store edges in predecessor array

DFS_rec (G, v)
mark v as "visited" // d[v]=++time for each w adjacent to v do
if w is unvisited
Add edge (v, w) to tree T
DFS_rec (G,w)
mark v as "finished" // $f[v]=++$ time

Example of depth-first search

$\pi: \frac{\mathrm{abbc} d \text { e f g h i }}{-\mathrm{a} \mathrm{b} \text { be f g }}$
Store edges in predecessor array

Example of depth-first search

$\pi: \frac{\mathrm{abbc} d \text { e f g h i }}{-\mathrm{a} \mathrm{b} \text { be f g }}$
Store edges in predecessor array

Example of depth-first search

$\pi: \frac{\mathrm{a} \text { b c d e f g h i }}{-\mathrm{a} \mathrm{b} \text { bef g f }}$
Store edges in predecessor array

Example of depth-first search

$\pi: \frac{\mathrm{ab} \text { b d e f g h i }}{-\mathrm{a} \mathrm{b} \mathrm{i} \mathrm{b} \mathrm{e} \mathrm{f} \mathrm{g} \mathrm{f}}$
Store edges in predecessor array

Example of depth-first search

π : a b c d e f g h i
Store edges in predecessor array

DFS_rec (G, v)
mark v as "visited" // d[v]=++time for each w adjacent to v do
if w is unvisited
Add edge (v, w) to tree T DFS_rec (G, w)
mark v as "finished" // flv]=++time

Example of depth-first search

π : a b c d e f g h i
Store edges in predecessor array

Example of depth-first search

π : a b c d e f g h i
Store edges in predecessor array

Example of depth-first search

π : a b c d e f g h i
Store edges in predecessor array

DFS_rec (G, v)
mark v as "visited" // d[v]=++time for each w adjacent to v do
if w is unvisited
Add edge (v, w) to tree T
DFS_rec (G, w)
mark v as "finished" // flv]=++time

Example of depth-first search

$\pi: \frac{\mathrm{a} \text { b c d e f g h i }}{-\mathrm{a} \mathrm{b} \mathrm{i} \mathrm{b} \mathrm{ef} \mathrm{g} \mathrm{f}}$
Store edges in predecessor array

DFS_rec (G, v)
mark v as "visited" // d[v]=++time for each w adjacent to v do
if w is unvisited
Add edge (v, w) to tree T
DFS_rec (G, w)
mark v as "finished" // flv]=++time

Example of depth-first search

$\pi: \frac{\text { a b c d e f g h i }}{-\mathrm{a} \mathrm{b} \mathrm{i} \mathrm{b} \mathrm{e} \mathrm{f} \mathrm{g} \mathrm{f}}$
Store edges in predecessor array

Depth-First Search (DFS)

$\mathrm{O}(n)$
$\mathrm{O}(n)$
without DFs_rec
DFS $(G=(V, E))$ Mark all vertices in G as "unvisited" // time= for each vertex $v \in V$ do if v is unvisited DFS_rec (G, v)

DFS_rec (G, v)

mark v as "visited" // d[v]=++time
for each w adjacent to v do
if w is unvisited
Add edge (v, w) to tree T DFS_rec (G,w)
mark v as "finished" // f[v]=++time
\Rightarrow With Handshaking Lemma, all recursive calls are $\mathrm{O}(\mathrm{m})$, for a total of $\mathrm{O}(n+m)$ runtime

DFS runtime

- Each vertex is visited at most once $\Rightarrow \mathrm{O}(n)$ time
- The body of the for loops (except the recursive call) take constant time per graph edge
- All for loops take $\mathrm{O}(\mathrm{m})$ time
- Total runtime is $\mathrm{O}(n+m)=\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$

Paths, Cycles, Connectivity

Let $G=(V, E)$ be a directed (or undirected) graph

- A path from v_{1} to v_{k} in G is a sequence of vertices $v_{1}, v_{2}, \ldots, v_{\mathrm{k}}$ such that $\left(v_{\mathrm{i}}, v_{\{i+1\}}\right) \in E$ (or $\left\{v_{\mathrm{i}}, v_{\{i+1\}}\right\} \in E$ if G is undirected) for all $i \in\{1, \ldots, k-1\}$.
- A path is simple if all vertices in the path are distinct.
- A path $v_{1}, v_{2}, \ldots, v_{k}$ forms a cycle if $v_{1}=v_{k}$.
- A graph with no cycles is acyclic.
- An undirected acyclic graph is called a tree. (Trees do not have to have a root vertex specified.)
- A directed acyclic graph is a DAG. (A DAG can have undirected cycles if the direction of the edges is not considered.)
- An undirected graph is connected if every pair of vertices is connected by a path. A directed graph is strongly connected if for every pair $u, v \in V$ there is a path from u to v and there is a path from v to u.
- The (strongly) connected components of a graph are the equivalence classes of vertices under this reachability relation.

