CMPS 6610 Algorithms – Fall 16

11/29/16

9. Homework

Due 12/6/16 at the beginning of class

- To be or not to be ... in P, NP, or co-NP (6 points) Specify for each of the problems below whether they are in P, NP, and/or co-NP. Justify your answers.
 - (a) Compute a heap from an array A of n numbers.
 - (b) Given an undirected graph G = (V, E), and a number k. Is there a subset $S \subseteq V$ such that every vertex not in S is adjacent to a vertex in S?
 - (c) Given an array A of n numbers, and a number k. Does A contain the number k?
 - (d) Given an array A of n numbers, and a number k. Is it true that for each subset $S \subseteq A$, the sum of numbers in S does not equal k?
- 2. NP-completeness (8 points)
 - (a) The **2-TSP** problem takes an undirected graph G = (V, E) with positive edge weights as well as a positive integer k as input, and asks whether there are **two** closed tours in G such that both tours together visit every vertex in V exactly once, and the total sum of all edge weights on both tours is at most k. Prove that **2-TSP** is NP-complete.
 - (b) The **Subgraph Isomorphism** problem takes two graphs G_1 and G_2 as input and asks whether G_1 is isomorphic to a subgraph of G_2 .
 - G = (V, E) is a subgraph of G' = (V', E') if $V \subseteq V'$ and $E \subseteq E'$.
 - Two graphs G = (V, E) and G' = (V', E') are *isomorphic* if there exists a bijective map $F : V \to V'$ such that $(u, v) \in E \Leftrightarrow (f(u), f(v)) \in E'$.

Show that **Subgraph Isomorphism** is *NP*-complete.

3. NPC and co-NP (4 points)

Let NPC be the class of NP-complete problems.

Show that $NPC \cap co-NP = \emptyset$, under the assumption that $NP \neq co-NP$.

FLIP OVER TO BACK PAGE \implies

4. $\Pi_1 \leq \Pi_2$ (12 points)

Let Π_1 and Π_2 be decision problems and suppose Π_1 is polynomial-time reducible to Π_2 , so, $\Pi_1 \leq \Pi_2$. Answer and justify each of the questions below:

- (a) If $\Pi_2 \in P$ does this imply that $\Pi_1 \in P$?
- (b) If $\Pi_1 \in P$ does this imply that $\Pi_2 \in P$?
- (c) If $\Pi_1 \in NP$, does this imply that $\Pi_2 \in NP$?
- (d) If $\Pi_2 \in co-NP$, does this imply that $\Pi_1 \in co-NP$?
- (e) If $\Pi_1 \in NP$, does this imply that Π_2 is NP-complete?
- (f) If $\Pi_1 \notin P$ does this imply that $\Pi_2 \notin P$?
- (g) If $\Pi_2 \notin P$ does this imply that $\Pi_1 \notin P$?
- (h) If Π_2 is NP-complete, does this imply that $\Pi_1 \in NP$?
- (i) If Π_1 is NP-complete, does this imply that $\Pi_2 \in NP$?
- (j) If Π_1 and Π_2 are NP-complete, is Π_2 polynomially reducible to Π_1 ?
- (k) If $\Pi_1 \in NP$ and $\Pi_2 \in P$, what does this imply?
- (l) If Π_1 is NP-complete and $\Pi_2 \in P$, what does this imply?