CMPS 4610 Algorithms - Fall 16

9. Homework

Due 12/6/16 at the beginning of class

1. To be or not to be \ldots in $P, N P$, or $c o-N P$ (6 points)

Specify for each of the problems below whether they are in $P, N P$, and/or co- $N P$. Justify your answers.
(a) Compute a heap from an array A of n numbers.
(b) Given an undirected graph $G=(V, E)$, and a number k. Is there a subset $S \subseteq V$ such that every vertex not in S is adjacent to a vertex in S ?
(c) Given an array A of n numbers, and a number k. Does A contain the number k ?
(d) Given an array A of n numbers, and a number k. Is it true that for each subset $S \subseteq A$, the sum of numbers in S does not equal k ?

2. $N P$-completeness (4 points)

The 2-TSP problem takes an undirected graph $G=(V, E)$ with positive edge weights as well as a positive integer k as input, and asks whether there are two closed tours in G such that both tours together visit every vertex in V exactly once, and the total sum of all edge weights on both tours is at most k. Prove that 2-TSP is $N P$-complete.

3. $N P C$ and $c o-N P$ (4 points)

Let $N P C$ be the class of $N P$-complete problems.
Show that $N P C \cap c o-N P=\emptyset$, under the assumption that $N P \neq c o-N P$.
4. $\Pi_{1} \leq \Pi_{2}$ (8 points)

Let Π_{1} and Π_{2} be decision problems and suppose Π_{1} is polynomial-time reducible to Π_{2}, so, $\Pi_{1} \leq \Pi_{2}$. Answer and justify each of the questions below:
(a) If $\Pi_{2} \in P$ does this imply that $\Pi_{1} \in P$?
(b) If $\Pi_{1} \in N P$, does this imply that $\Pi_{2} \in N P$?
(c) If $\Pi_{2} \in c o-N P$, does this imply that $\Pi_{1} \in c o-N P$?
(d) If $\Pi_{1} \in N P$, does this imply that Π_{2} is NP-complete?
(e) If $\Pi_{2} \notin P$ does this imply that $\Pi_{1} \notin P$?
(f) If Π_{2} is NP-complete, does this imply that $\Pi_{1} \in N P$?
(g) If Π_{1} and Π_{2} are NP-complete, is Π_{2} polynomially reducible to Π_{1} ?
(h) If Π_{1} is NP-complete and $\Pi_{2} \in P$, what does this imply?

