CMPS 6610 Algorithms - Fall 16

7. Homework

Due $\mathbf{1 1 / 1 5 / 1 6}$ at the beginning of class

1. Union by Weight (3 points)

Consider a disjoint-set forest implementation that uses union by weight only. Give a sequence of m Make-Set, Union, and Find-Set operations, n of which are Make-Set operations, that takes $\Omega(m \log n)$ time.

2. Link Before Find (5 points)

In a disjoint-set forest implementation, the Union operation is implemented as $\operatorname{Union}(x, y)=\operatorname{Link}(\operatorname{Find}-\operatorname{Set}(x), \operatorname{Find}-\operatorname{Set}(y))$.
(a) Consider a disjoint-set forest implementation that uses both union by weight and path compression. Show that any sequence of m Make-Set, Find-Set, and Link operations, where all the Link operations appear before any of the Find-Set operations, takes only $O(m)$ time.
Hint: Use amortized analysis, possibly the accounting method.
(b) What happens in the same situation if we use path-compression only (and not union by weight)?

3. Dijkstra variants (8 points)

(a) Let G be a directed graph with non-negative edge weights. Consider changing the condition in the while loop of Dijkstra's algorithm to $|Q|>1$. Prove that at the end of the algorithm the d-values contain the shortest path weights (so, the shortest path weights are correctly computed even when skipping the last iteration from Dijkstra's algorithm).
(b) Let G be a directed graph with non-negative edge weights. Consider changing the condition in the while loop of Dijkstra's algorithm to $|Q|>2$. Show that at the end of the algorithm the d-values do not necessarily contain the shortest path weights (give a counter-example).
(c) Now, let G be a directed graph with arbitrary edge weights, and assume that some of the edge weights are negative. Let W be the smallest (negative) weight of any edge. Consider reweighing each edge weight by adding $-W$ to every edge, which yields a graph G^{\prime} with non-negative edge weights. Then run Dijkstra's algorithm on G^{\prime}, and in the end add W to every computed d-value. Give a counter-example to show that this approach does not always compute the correct d-values.
4. Negative edge weights (5 points)
(a) Give an example of a directed connected graph with real edge weights (that may be negative) for which Dijkstra's algorithm produces incorrect answers. Justify your answer.
(b) Suppose the weighted, directed graph $G=(V, E)$ has a special structure in which edges that leave the source vertex s may have negative weights. All other edge weights are nonnegative, and there are no negative-weight cycles. Show that Dijkstra's algorithm correctly finds shortest paths from s in G.
5. Negative-weight cycle (4 points)

Given a directed weighted connected graph $G=(V, E)$ with real edge weights (i.e., negative edge weights are allowed). Give an algorithm that detects and prints out a negative-weight cycle if G contains a negative-weight cycle. (Do not use Floyd-Warshall's algorithm.) What is the runtime of your algorithm?

