CMPS 4610 Algorithms - Fall 16

4. Homework

Due 10/11/16 at the beginning of class

1. Christmas (8 points)

For Christmas, I only had so much money to spend on gifts for n people, and I did not allocate my resources very well. Now, I want to be ready for next Christmas. Naturally, I want a dynamic programming solution for my problem.
For each person, I can choose either a good, expensive gift or a bad, cheap gift. I want to maximize the happiness of the people I am giving the gifts to. I have four arrays of size n containing positive integers between 1 and n : Cgood, Cbad, Hgood, Hbad.

- Cgood[i] indicates the cost of a good gift for person i.
- Cbad[i] indicates the cost of a bad gift for person i.
- Hgood[i] indicates the happiness of person i getting a good gift.
- Hbad[i] indicates the happiness of person i getting a bad gift.

You can assume Cgood[i] > Cbad[i] and Hgood[i] > Hbad[i]. I want to maximize the sum of the happiness over all n people, but I only have a total of C money to spend.
(a) (2 points) Suppose the following are the arrays for $n=4$ and $C=10$:

Cgood: [2, 3, 4, 3]
Cbad: [1, 2, 2, 2]
Hgood: [4, 3, 3, 4]
Hbad: [2, 2, 2, 2]
What gift selection maximizes happiness while not exceeding cost? What is the solution for $C=9$?
(b) (3 points) Let $h(i, c)$ be the maximum happiness for the first i people with a cost equal or less than c. For example, $h(2,4)=6$ in the previous example by choosing a good gift for person 1 (cost 2, happiness 4) and a bad gift for person 2 (cost 2, happiness 2). Provide a recursive definition for $h(i, c)$. That is, show how to calculate h for i people from the values for $i-1$ people.
(c) (2 points) Write a dynamic programing algorithm to compute h.
(d) (1 point) What are the runtime and the space complexity of your algorithm? Explain your answer.

2. Matrix Chain Multiplication (3 points)

The dynamic programming approach for the matrix chain multiplication problem makes many recursive calls by trying out all possible k with $i \leq k \leq j$ in order to split $A_{i j}=A_{i} A_{i+1}, \ldots, A_{j}$. Now, consider the greedy approach which selects the k that simply minimizes the quantity $p_{i-1} p_{k} p_{j}$, and then simply recursive for this one choice of k only. Give a counter-example which shows that this greedy approach yields a suboptimal solution.

3. Intervals (7 points)

Let $A[1 . . n]$ be an array of n integers (which can be positive, negative, or zero). An interval with start-point i and end-point $j, i \leq j$, consists of the numbers $A[i], \ldots, A[j]$ and the weight of this interval is the sum of all elements $A[i]+\ldots+$ $A[j]$.
The problem is: Find the interval in A with maximum weight.
Describe a dynamic programming algorithm for this problem. Proceed in the following steps:
(a) (2 points) Develop a recurrence for the following entity: $S(j)=$ maximum of the weights of all intervals with end-point j.
(b) (2 point) Based on this recurrence describe an algorithm that computes all $S(j)$ in a dynamic programming fashion, and afterwards determines the endpoint j^{*} of an optimal interval.
(c) (2 points) Given the end-point j^{*} describe how to find the start-point i^{*} of an optimal interval by backtracking.
(d) (1 point) What are the runtime and the space complexity of your algorithm? Explain your answer.

