
CMPS 4610 Algorithms – Fall 16

10/4/16

4. Homework
Due 10/11/16 at the beginning of class

1. Christmas (8 points)
For Christmas, I only had so much money to spend on gifts for n people, and I did
not allocate my resources very well. Now, I want to be ready for next Christmas.
Naturally, I want a dynamic programming solution for my problem.

For each person, I can choose either a good, expensive gift or a bad, cheap gift.
I want to maximize the happiness of the people I am giving the gifts to. I have
four arrays of size n containing positive integers between 1 and n: Cgood, Cbad,

Hgood, Hbad.

• Cgood[i] indicates the cost of a good gift for person i.

• Cbad[i] indicates the cost of a bad gift for person i.

• Hgood[i] indicates the happiness of person i getting a good gift.

• Hbad[i] indicates the happiness of person i getting a bad gift.

You can assume Cgood[i] > Cbad[i] and Hgood[i] > Hbad[i]. I want to max-
imize the sum of the happiness over all n people, but I only have a total of C
money to spend.

(a) (2 points) Suppose the following are the arrays for n = 4 and C = 10:

Cgood: [2, 3, 4, 3]

Cbad: [1, 2, 2, 2]

Hgood: [4, 3, 3, 4]

Hbad: [2, 2, 2, 2]

What gift selection maximizes happiness while not exceeding cost? What is
the solution for C = 9?

(b) (3 points) Let h(i, c) be the maximum happiness for the first i people with a
cost equal or less than c. For example, h(2, 4) = 6 in the previous example
by choosing a good gift for person 1 (cost 2, happiness 4) and a bad gift for
person 2 (cost 2, happiness 2). Provide a recursive definition for h(i, c). That
is, show how to calculate h for i people from the values for i− 1 people.

(c) (2 points) Write a dynamic programing algorithm to compute h.

(d) (1 point) What are the runtime and the space complexity of your algorithm?
Explain your answer.

Flip over to back page =⇒



2. Matrix Chain Multiplication (3 points)

The dynamic programming approach for the matrix chain multiplication problem
makes many recursive calls by trying out all possible k with i ≤ k ≤ j in order
to split Aij = AiAi+1, . . . , Aj . Now, consider the greedy approach which selects
the k that simply minimizes the quantity pi−1pkpj , and then simply recursive for
this one choice of k only. Give a counter-example which shows that this greedy
approach yields a suboptimal solution.

3. Intervals (7 points)
Let A[1..n] be an array of n integers (which can be positive, negative, or zero).
An interval with start-point i and end-point j, i ≤ j, consists of the numbers
A[i], . . . , A[j] and the weight of this interval is the sum of all elements A[i] + . . . +
A[j].

The problem is: Find the interval in A with maximum weight.

Describe a dynamic programming algorithm for this problem. Proceed in the
following steps:

(a) (2 points) Develop a recurrence for the following entity: S(j) = maximum of
the weights of all intervals with end-point j.

(b) (2 point) Based on this recurrence describe an algorithm that computes all
S(j) in a dynamic programming fashion, and afterwards determines the end-
point j∗ of an optimal interval.

(c) (2 points) Given the end-point j∗ describe how to find the start-point i∗ of
an optimal interval by backtracking.

(d) (1 point) What are the runtime and the space complexity of your algorithm?
Explain your answer.


