CMPS 4610 Introduction to Algorithms - Fall 16

1. Homework

Due $9 / 13 / 16$ at the beginning of class

1. Some Math (4 points)

- (2 points) Use the definition of the logarithm to prove for any $a, b, c>0$:

$$
\log _{b} a=\frac{\log _{c} a}{\log _{c} b}
$$

- (2 points) Use (weak) induction to prove for any $n \geq 1$:

$$
\sum_{i=1}^{n}\left(i 2^{i}\right)=2+(n-1) 2^{n+1}
$$

2. Big-Oh ranking (11 points)

Rank the following twelve functions by order of growth, i.e., find an arrangement f_{1}, f_{2}, \ldots of the functions satisfying $f_{1} \in O\left(f_{2}\right), f_{2} \in O\left(f_{3}\right), \ldots$. Partition your list into equivalence classes such that f and g are in the same class if and only if $f \in \Theta(g)$. For every two functions f_{i}, f_{j} that are adjacent in your ordering, prove shortly why $f_{i} \in O\left(f_{j}\right)$ holds. And if f and g are in the same class, prove that $f \in \Theta(g)$.

$$
n, n^{2},\left(\frac{3}{2}\right)^{n}, \log ^{2} n, n 2^{n}, 4^{\log n}, \log n, 2^{n}, \sqrt{n}, 2^{\log n}, \sqrt{\log n}, n \log n
$$

Bear in mind that in some cases it might be useful to show $f(n) \in o(g(n))$, since $o(g(n)) \subset O(g(n))$. If you try to show that $f(n) \in o(g(n))$, then it might be useful to apply the rule of l'Hôpital which states that

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\lim _{n \rightarrow \infty} \frac{f^{\prime}(n)}{g^{\prime}(n)}
$$

if the limits exist; where f^{\prime} and g^{\prime} are the derivatives of f and g, respectively.

3. Big-Oh (2 points)

Show using the definition of big-Oh:
If $f(n) \in O(g(n))$ and $g(n) \in O(h(n))$ then $f(n) \in O(h(n))$.

4. Code snippet (2 points)

Give the Θ-runtime for the code snippet below, depending on n. Make sure your bound is tight. Justify your answer.

```
for(i=n; i>=1; i=i/5)
    print("hello");
```

