CMPS 3130/6130 Computational Geometry - Spring 17

$$
3 / 23 / 17
$$

6. Homework

Due Thursday 4/6/17 before class.

1. Worst-Case DT Runtime (7 points)

The randomized incremental construction of the Delaunay triangulation of a set of n points in the plane takes $\Omega\left(n^{2}\right)$ time in the worst-case. That means that, for each n, there is a set of n points together with a particular input order such that the algorithm executes $\Omega\left(n^{2}\right)$ edge flips.

What properties are required to cause that many flips? Please sketch the construction of such a bad input (it should work for general n). (Hint: It might help to play with one of the Delaunay triangulation programs. You can download Voroglide and run it with appletviewer from the command line.)

2. Railway Tracks (9 points)

On n parallel railway tracks n trains are going with constant speeds v_{1}, \ldots, v_{n}. At time $t=0$ the trains are at positions k_{1}, \ldots, k_{n}.
Give an $O(n \log n)$ time algorithm that detects all trains that at some moment in time are leading.
(Hint: Use halfplane intersection.)
3. Dual triangle (6 points)

Consider a (solid) triangle $\Delta p q r$ with corner points p, q, r. Describe its dual.
4. Linear Separator (8 points)

Let $R=\left\{r_{1}, \ldots, r_{m}\right\}$ be set of m red points, and let $B=\left\{b_{1}, \ldots, b_{n}\right\}$ be a set of n blue points in the plane. A line l is called a linear separator if all points of R lie on one side of l and all points of B lie on the other side. (You may assume appropriate general position, and may disregard points that lie exactly on the line.)
Use point-line duality to develop an algorithm for this problem which runs in expected linear time. (Hint: Linear Programming.)

