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Windowing
Input: A set S of n line segments in the plane

Query: Report all segments in S that
intersect a given query window

Subproblem: Process a set of intervals on the line
into a data structure which supports queries of the
type: Report all intervals that contain a query point.

 Interval trees
 Segment trees
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Interval Trees

Input: A set I of n intervals on the line.

Idea: Partition I into Ileft Imid Iright where xmid is the 
median of the 2n endpoints.
Store Imid twice as two lists of intervals: Lleft sorted by 
left endpoint and as Lright sorted by right endpoint. 

  disjoint union

Imid stored as
Lleft , Lright

interval
tree for

Ileft

interval
tree for

Iright
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Interval Trees

Lemma: An interval tree on a set of n intervals uses O(n) space and 
has height O(log n). It can be constructed recursively in O(n log n). 
time.
Proof: Each interval is stored in a set Imid only once, hence O(n)
space. In the worst case half the intervals are to the left and right of 
xmid, hence the height is O(log n). Constructing the (sorted) lists 
takes O(|Iv| + |Iv

mid| log |Iv
mid|) time per vertex v. 
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Interval Tree Query

Theorem: An interval tree on a set of n intervals can be constructed 
in O(n log n) time and uses O(n) space. All  intervals that contain a 
query point can be reported in O(log n + k)  time, where k =
#reported intervals. 
Proof: We spend O(1+kv) time at vertex v, where kv = #intervals 
reported at v. We visit at most 1 node at any depth.
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Segment Trees
• Let I={s1,…,sn} be a set of n intervals (segments), 

and let p1, p2, …,pm be the sorted list of distinct 
interval endpoints of I.

• Partition the real line into elementary intervals:

• Construct a balanced binary search tree T with leaves 
corresponding to the elementary intervals

p1 p2 p3 p4 p5 p6 p7
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• Int():=elementary interval corresponding to leaf 
• Int(v):=union of Int() of all leaves in subtree rooted at v

Elementary Intervals

p1 p2 p3 p4 p5 p6 p7

v

Int(v)
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s1

s2
s3

s4

s5

Segment Trees

p1 p2 p3 p4 p5 p6 p7

Each vertex v stores (1) Int(v) and (2) the canonical subset I(v)I:
I(v):= {sI | Int(v)  s and Int(parent(v))  s}

Store segments as 
high as possible
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Segment Trees

p1 p2 p3 p4 p5 p6 p7

Each vertex v stores (1) Int(v) and (2) the canonical subset I(v)I:
I(v):= {sI | Int(v)  s and Int(parent(v))  s}

Store segments as 
high as possible
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Space
Lemma: A segment tree on n intervals uses O(n log n) 
space.

Proof:  Any interval s is stored in at most two sets I(v1), 
I(v2) for two different vertices v1, v2 at the
same level of T.  [If s was stored in I(v3)
for a third vertex v3, then s would have to
span from left to right, and
Int(parent(v2))s, hence s is cannot be
stored in v2.] 
The tree is a balanced tree of height 
O(log n). s
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Segment Tree Query

Runtime Analysis: 
• Visit one node per level.
• Spend O(1+kv) time per node v.
 Runtime O(log n + k)
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Segment Tree Construction
1. Sort interval endpoints of I.  elementary intervals 
2. Construct balanced BST on elementary intervals.
3. Determine Int(v) bottom-up. 
4. Compute canonical subsets by incrementally inserting 

intervals s=[x,x’]I into T using InsertSegmentTree:

O(n log n)

s

s )

s
s

s )

s )
s
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Segment Trees
Runtime:
• Each interval stored at most twice per level
• At most one node per level that contains the left 

endpoint of s (same with right endpoint)
 Visit at most 4 nodes per level
 O(log n) per interval, and O(n log n) total

Theorem:  A segment tree for a set of n intervals can be 
built in O(n log n) time and uses O(n log n) space. All 
intervals that contain a query point can be reported in 
O(log n + k) time.
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2D Windowing Revisited
Input: A set S of n disjoint line segments in the plane

Task: Process S into a data structure such that all 
segments intersecting a 

vertical query segment q:=qx  [qy,q’y] 
can be reported efficiently.

qx

qy

q’y
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2D Windowing Revisited
Solution:
Segment tree with nested range tree
• Build segment tree T based on x-

intervals of segments in S.
 each Int(v) Int(v)(-,)

vertical slab
• I(v)S(v) canonical set of segments 

spanning vertical slab

• Store S(v) in 1D range tree (binary 
search tree) T(v) based on vertical 
order of segments
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2D Windowing Revisited
Query algorithm: 
• Search regularly for qx in T
• In every visited vertex v report 

segments in T(v) between qy and 
q’y (1D range query)

 O(log n + kv) time for T(v)
 O(log2n + k) total

qx

qy

q’y
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2D Windowing Summary
Theorem: Let S be a set of (interior-) disjoint line segments 
in the plane. The segments intersecting a vertical query 
segment (or an axis-parallel rectangular query window) can 
be reported in O(log2 n + k) time, with O(n log n)
preprocessing time and O(n log n) space.

qx

qy

q’y


