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Windowing

Input: Aset S of n line segments in the plane /

Query: Report all segments in S that
Intersect a given query window T

Subproblem: Process a set of intervals on the line
Into a data structure which supports queries of the
type: Report all intervals that contain a query point.

= Interval trees
= Segment trees
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Interval Trees

Input: Aset | of n intervals on the line.

disjoint union
Idea: Partition | Into I, | 5O 1, where X4 IS the
median of the 2n endpoints.
Store |, twice as two lists of intervals: L., sorted by
left endpoint and as L, sorted by right endpoint.
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Interval Trees

Lleft = 3,54, 55 Lright = §5,53, 54
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Lemma: An interval tree on a set of n intervals uses O(n) space and
has height O(log n). It can be constructed recursively in O(n log n).
time.

Proof: Each interval is stored in a set | _;, only once, hence O(n)
space. In the worst case half the intervals are to the left and right of
Xig» NENce the height is O(log n). Constructing the (sorted) lists
takes O(|I| + |1Yi4l 109 [IV.4]) time per vertex v. =
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Interval Tree Query

Algorithm QUERYINTERVALTREE(V, g,)

Input. The root v of an interval tree and a query point g,.

Output. All intervals that contain g.

1. if visnot aleaf

% then if g, < xpiq(v)

3. then Walk along the list L. (v), starting at the interval with the
leftmost endpoint, reporting all the intervals that contain g.
Stop as soon as an interval does not contain gy.
QUERY INTERVALTREE(/c(V),gx)

else Walk along the list Lyigne (V), starting at the interval with the
rightmost endpoint, reporting all the intervals that contain
gx- Stop as soon as an interval does not contain g,.

6. QUERY INTERVALTREE(rc(V), gx)

Theorem: An interval tree on a set of n intervals can be constructed
In O(n log n) time and uses O(n) space. All Intervals that contain a
query point can be reported in O(log n + k) time, where k =
#reported intervals.

Proof: We spend O(1+k,) time at vertex v, where k, = #intervals
reported at v. We visit at most 1 node at any depth. ]

4/13/15 CMPS 3130/6130 Computational Geometry >

oy



Segment Trees

 Letl={s,,...,5,} beasetofn intervals (segments),
and let p,, p,, ...,p,, be the sorted list of distinct
Interval endpoints of |.
 Partition the real line into elementary intervals:
(—o0,p1), [P1, P1] P1, 02)) ooos Pm—1, D)) [P Pm ], (P, )
o Construct a balanced binary search tree T with leaves
corresponding to the elementary intervals
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Elementary Intervals

Int(n):=elementary interval corresponding to leaf u
Int(v):=union of Int(n) of all leaves in subtree rooted at v
O
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Store segments as
Segment Trees high as possible
Each vertex v stores (1) Int(v) and (2) the canosieal subset |(v)cl:
1(v):={sel | Int(v) < s and Int(parent(v)) & s}
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<
Store segments as

Segment Trees high as possible
Each vertex v stores (1) Int(v) and (2) the canosieal subset |(v)cl:
1(v):={sel | Int(v) < s and Int(parent(v)) & s}
O
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Space

Lemma: A segment tree on n intervals uses O(n log n)
space.

Proof: Any interval s is stored in at most two sets I(v,),
I(v,) for two different vertices v,, v, at the ’
same level of T. [If s was stored in I(v;)

for a third vertex v, then s would have to £ paren(en)

span from left to right, and
Int(parent(v,))cs, hence s Is cannot be /\ /\
stored in v,,.]

The tree is a balanced tree of height

O(log n).
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Segment Tree Query

Algorithm QUERYSEGMENTTREE(V,gx)

Input. The root of a (subtree of a) segment tree and a query point g.

Output. All intervals in the tree containing g,.

1. Report all the intervals in I(v).

2. if visnot a leaf

3 then if g, € Int(lc(v))

4. then QUERYSEGMENTTREE(Ic(V), gx)
5 else QUERYSEGMENTTREE(rc(V),gy)

Runtime Analysis:

 Visit one node per level.

e Spend O(1+k,) time per node v.
= Runtime O(log n + k)
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Segment Tree Construction

Sort interval endpoints of I. — elementary intervals
Construct balanced BST on elementary intervals.
Determine Int(v) bottom-up.

Compute canonical subsets by incrementally inserting
Intervals s=[x,x’] el into T using InsertSegmentTree:

O(n log n) |

B

Algorithm INSERTSEGMENTTREE(V, S )
Input. The root of a (subtree of a) segment tree and an interval.
Output. The interval will be stored in the subtree.
l. ifIntlv)cs
thenstore S atvy
else if Int(le(v))N S #0

then INSERTSEGMENTTREE(lc(V), S)

if Int(re(v))N S #0
then INSERTSEGMENTTREE(rc(v), S)

SRl
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Segment Trees

Runtime:

e Each interval stored at most twice per level

e At most one node per level that contains the left
endpoint of s (same with right endpoint)

— Visit at most 4 nodes per level

— O(log n) per interval, and O(n log n) total

Theorem: A segment tree for a set of n intervals can be
built in O(n log n) time and uses O(n log n) space. All
Intervals that contain a query point can be reported in
O(log n + k) time.
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2D Windowing Revisited

Input: A set S of n disjoint line segments in the plane

Task: Process S into a data structure such that all
segments intersecting a

vertical query segment q:=q, x [q,,q’,]
can be reported efficiently.
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2D Windowing Revisited

Solution:
Segment tree with nested range tree
 Build segment tree T based on x-  sta)=ts%)
Intervals of segments in S. T
— each Int(v)= Int(v)x(-c0,00) A
vertical slab == "

o«
 1(v)=S(v) canonical set of segments 3 Y~ |

. . =g
spanning vertical slab -

o | ! o -
« Store S(v) In 1D range tree (binary
search tree) T(v) based on vertical g O &
order of segments T N O
I | @
15
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@ S(v3) = {s4,56}

@ S(v1) = {s3}
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2D Windowing Peviqimd

Query algorithm:

S{v1) = {s3}

e Searchreqgularly forg, inT gl fem] @ (%) 506 = fns

e Inevery visited vertex v report
segments in T(v) between g, and

g’y (1D range query) g

= O(log n + k) time for T(v)
— O(log®n + k) total
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2D Windowing Summary

Theorem: Let S be a set of (interior-) disjoint line segments
In the plane. The segments intersecting a vertical query
segment (or an axis-parallel rectangular query window) can
be reported in O(log? n + k) time, with O(n log n)
preprocessing time and O(n log n) space.
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