
14/13/15

CMPS 3130/6130 Computational Geometry
Spring 2015

Windowing
Carola Wenk

CMPS 3130/6130 Computational Geometry

24/13/15 CS 6463 AT: Computational Geometry

Windowing
Input: A set S of n line segments in the plane

Query: Report all segments in S that
intersect a given query window

Subproblem: Process a set of intervals on the line
into a data structure which supports queries of the
type: Report all intervals that contain a query point.

 Interval trees
 Segment trees

34/13/15 CMPS 3130/6130 Computational Geometry

Interval Trees

Input: A set I of n intervals on the line.

Idea: Partition I into Ileft Imid Iright where xmid is the
median of the 2n endpoints.
Store Imid twice as two lists of intervals: Lleft sorted by
left endpoint and as Lright sorted by right endpoint.

  disjoint union

Imid stored as
Lleft , Lright

interval
tree for

Ileft

interval
tree for

Iright

44/13/15 CMPS 3130/6130 Computational Geometry

Interval Trees

Lemma: An interval tree on a set of n intervals uses O(n) space and
has height O(log n). It can be constructed recursively in O(n log n).
time.
Proof: Each interval is stored in a set Imid only once, hence O(n)
space. In the worst case half the intervals are to the left and right of
xmid, hence the height is O(log n). Constructing the (sorted) lists
takes O(|Iv| + |Iv

mid| log |Iv
mid|) time per vertex v.

54/13/15 CMPS 3130/6130 Computational Geometry

Interval Tree Query

Theorem: An interval tree on a set of n intervals can be constructed
in O(n log n) time and uses O(n) space. All intervals that contain a
query point can be reported in O(log n + k) time, where k =
#reported intervals.
Proof: We spend O(1+kv) time at vertex v, where kv = #intervals
reported at v. We visit at most 1 node at any depth.

64/13/15

Segment Trees
• Let I={s1,…,sn} be a set of n intervals (segments),

and let p1, p2, …,pm be the sorted list of distinct
interval endpoints of I.

• Partition the real line into elementary intervals:

• Construct a balanced binary search tree T with leaves
corresponding to the elementary intervals

p1 p2 p3 p4 p5 p6 p7

74/13/15

• Int():=elementary interval corresponding to leaf 
• Int(v):=union of Int() of all leaves in subtree rooted at v

Elementary Intervals

p1 p2 p3 p4 p5 p6 p7

v

Int(v)

84/13/15

s1

s2
s3

s4

s5

Segment Trees

p1 p2 p3 p4 p5 p6 p7

Each vertex v stores (1) Int(v) and (2) the canonical subset I(v)I:
I(v):= {sI | Int(v)  s and Int(parent(v))  s}

Store segments as
high as possible

94/13/15

Segment Trees

p1 p2 p3 p4 p5 p6 p7

Each vertex v stores (1) Int(v) and (2) the canonical subset I(v)I:
I(v):= {sI | Int(v)  s and Int(parent(v))  s}

Store segments as
high as possible

104/13/15

Space
Lemma: A segment tree on n intervals uses O(n log n)
space.

Proof: Any interval s is stored in at most two sets I(v1),
I(v2) for two different vertices v1, v2 at the
same level of T. [If s was stored in I(v3)
for a third vertex v3, then s would have to
span from left to right, and
Int(parent(v2))s, hence s is cannot be
stored in v2.]
The tree is a balanced tree of height
O(log n). s

114/13/15

Segment Tree Query

Runtime Analysis:
• Visit one node per level.
• Spend O(1+kv) time per node v.
 Runtime O(log n + k)

124/13/15

Segment Tree Construction
1. Sort interval endpoints of I.  elementary intervals
2. Construct balanced BST on elementary intervals.
3. Determine Int(v) bottom-up.
4. Compute canonical subsets by incrementally inserting

intervals s=[x,x’]I into T using InsertSegmentTree:

O(n log n)

s

s)

s
s

s)

s)
s

134/13/15

Segment Trees
Runtime:
• Each interval stored at most twice per level
• At most one node per level that contains the left

endpoint of s (same with right endpoint)
 Visit at most 4 nodes per level
 O(log n) per interval, and O(n log n) total

Theorem: A segment tree for a set of n intervals can be
built in O(n log n) time and uses O(n log n) space. All
intervals that contain a query point can be reported in
O(log n + k) time.

144/13/15 CS 6463 AT: Computational Geometry

2D Windowing Revisited
Input: A set S of n disjoint line segments in the plane

Task: Process S into a data structure such that all
segments intersecting a

vertical query segment q:=qx  [qy,q’y]
can be reported efficiently.

qx

qy

q’y

154/13/15 CS 6463 AT: Computational Geometry

2D Windowing Revisited
Solution:
Segment tree with nested range tree
• Build segment tree T based on x-

intervals of segments in S.
 each Int(v) Int(v)(-,)

vertical slab
• I(v)S(v) canonical set of segments

spanning vertical slab

• Store S(v) in 1D range tree (binary
search tree) T(v) based on vertical
order of segments

164/13/15 CS 6463 AT: Computational Geometry

2D Windowing Revisited
Query algorithm:
• Search regularly for qx in T
• In every visited vertex v report

segments in T(v) between qy and
q’y (1D range query)

 O(log n + kv) time for T(v)
 O(log2n + k) total

qx

qy

q’y

174/13/15 CS 6463 AT: Computational Geometry

2D Windowing Summary
Theorem: Let S be a set of (interior-) disjoint line segments
in the plane. The segments intersecting a vertical query
segment (or an axis-parallel rectangular query window) can
be reported in O(log2 n + k) time, with O(n log n)
preprocessing time and O(n log n) space.

qx

qy

q’y

