CMPS 3130/6130 Computational Geometry Spring 2015

Windowing

Carola Wenk

Windowing

Input: A set S of n line segments in the plane
Query: Report all segments in S that intersect a given query window

Subproblem: Process a set of intervals on the line into a data structure which supports queries of the type: Report all intervals that contain a query point.
\Rightarrow Interval trees
\Rightarrow Segment trees

Interval Trees

Input: A set I of n intervals on the line.

Idea: Partition I into $I_{\text {left }} \cup I_{\text {mid }} \cup \stackrel{\text { disijint union }}{I_{\text {right }} \text { where } x_{\text {mid }}}$ is the median of the $2 n$ endpoints.
Store $I_{\text {mid }}$ twice as two lists of intervals: $L_{\text {left }}$ sorted by left endpoint and as $L_{\text {right }}$ sorted by right endpoint.

Interval Trees

Lemma: An interval tree on a set of n intervals uses $O(n)$ space and has height $\mathrm{O}(\log n)$. It can be constructed recursively in $\mathrm{O}(n \log n)$. time.
Proof: Each interval is stored in a set $I_{\text {mid }}$ only once, hence $\mathrm{O}(n)$ space. In the worst case half the intervals are to the left and right of $x_{\text {mid }}$, hence the height is $\mathrm{O}(\log n)$. Constructing the (sorted) lists takes $\mathrm{O}\left(\left|I^{V}\right|+\mid I^{v}\right.$ mid $\left.|\log | I_{\text {mid }}^{v} \mid\right)$ time per vertex v.

Interval Tree Query

Algorithm Query IntervalTree $\left(\nu, q_{x}\right)$
Input. The root v of an interval tree and a query point q_{x}.
Output. All intervals that contain q_{x}.

1. if v is not a leaf
2. then if $q_{x}<x_{\text {mid }}(v)$
3. then Walk along the list $\mathcal{L}_{\text {left }}(v)$, starting at the interval with the leftmost endpoint, reporting all the intervals that contain q_{x}. Stop as soon as an interval does not contain q_{x}. Query IntervalTree $\left(l c(v), q_{x}\right)$
4.

else Walk along the list $\mathcal{L}_{\text {right }}(v)$, starting at the interval with the rightmost endpoint, reporting all the intervals that contain q_{x}. Stop as soon as an interval does not contain q_{x}.
6. QUERYINTERVALTREE $\left(r c(v), q_{x}\right)$

Theorem: An interval tree on a set of n intervals can be constructed in $\mathrm{O}(n \log n)$ time and uses $\mathrm{O}(n)$ space. All intervals that contain a query point can be reported in $O(\log n+k)$ time, where $k=$ \#reported intervals.
Proof: We spend $\mathrm{O}\left(1+k_{v}\right)$ time at vertex v, where $k_{v}=$ \#intervals reported at v. We visit at most 1 node at any depth.

Segment Trees

- Let $I=\left\{s_{1}, \ldots, s_{n}\right\}$ be a set of n intervals (segments), and let $p_{1}, p_{2}, \ldots, p_{\mathrm{m}}$ be the sorted list of distinct interval endpoints of I.
- Partition the real line into elementary intervals:
$\left(-\infty, p_{1}\right),\left[p_{1}, p_{1}\right],\left(p_{1}, p_{2}\right), \ldots,\left(p_{m-1}, p_{m}\right),\left[p_{m}, p_{m}\right],\left(p_{m}, \infty\right)$
- Construct a balanced binary search tree T with leaves corresponding to the elementary intervals

Elementary Intervals

- $\operatorname{Int}(\mu):=$ elementary interval corresponding to leaf μ
- $\operatorname{Int}(v):=$ union of $\operatorname{Int}(\mu)$ of all leaves in subtree rooted at v

Segment Trees

Store segments as high as possible

Each vertex v stores (1) $\operatorname{Int}(v)$ and (2) the canonieal subset $\mathrm{I}(\mathrm{v}) \subseteq \mathrm{I}$:

$$
\mathrm{I}(v):=\{s \in \mathrm{I} \mid \operatorname{Int}(v) \subseteq s \text { and } \operatorname{Int}(\text { parent }(v)) \not \subset s\}
$$

Segment Trees

Store segments as high as possible

Each vertex v stores (1) $\operatorname{Int}(v)$ and (2) the canonieal subset $\mathrm{I}(\mathrm{v}) \subseteq \mathrm{I}$:

$$
\mathrm{I}(v):=\{s \in \mathrm{I} \mid \operatorname{Int}(v) \subseteq s \text { and } \operatorname{Int}(\text { parent }(v)) \not \subset s\}
$$

Space

Lemma: A segment tree on n intervals uses $\mathrm{O}(n \log n)$ space.

Proof: Any interval s is stored in at most two sets $\mathrm{I}\left(v_{1}\right)$, $\mathrm{I}\left(v_{2}\right)$ for two different vertices v_{1}, v_{2} at the same level of T. [If s was stored in $\mathrm{I}\left(v_{3}\right)$ for a third vertex v_{3}, then s would have to span from left to right, and
$\operatorname{Int}\left(\right.$ parent $\left.\left(v_{2}\right)\right) \subseteq s$, hence s is cannot be stored in v_{2}.]
The tree is a balanced tree of height O(log n).

Segment Tree Query

Algorithm Query SegmentTree $\left(v, q_{x}\right)$
Input. The root of a (subtree of a) segment tree and a query point q_{x}. Output. All intervals in the tree containing q_{x}.

1. Report all the intervals in $I(v)$.
2. if v is not a leaf
3. then if $q_{x} \in \operatorname{Int}(l c(v))$
4. then QuerySegmentTree $\left(l c(v), q_{x}\right)$
5. else QuerySegmentTree $\left(r c(v), q_{x}\right)$

Runtime Analysis:

- Visit one node per level.
- Spend $\mathrm{O}\left(1+k_{v}\right)$ time per node v.
\Rightarrow Runtime $\mathrm{O}(\log n+k)$

Segment Tree Construction

$O(n \log n) \begin{cases}1 . & \text { Sort interval endpoints of } I . \rightarrow \text { elementary intervals } \\ 2 . & \text { Construct balanced BST on elementary intervals. } \\ 3 . & \text { Determine Int(v) bottom-up. } \\ \text { 4. } & \text { Compute canonical subsets by incrementally inserting } \\ & \text { intervals } s=\left[x, x^{\prime}\right] \in I \text { into } T \text { using InsertSegmentTree: }\end{cases}$

```
Algorithm InSERTSEGMENTTREE(v,s )
Input. The root of a (subtree of a) segment tree and an interval.
Output. The interval will be stored in the subtree.
1. if }\operatorname{Int}(v)\subseteq
2. then store s at v
3. else if Int (lc(v))\caps \not=\emptyset
4. then InSERTSEGMENTTREE( }lc(v),s
5. if Int(rc(v))\caps}\not=
6. then InsertSegmentTree(rc(v),| s)
```


Segment Trees

Runtime:

- Each interval stored at most twice per level
- At most one node per level that contains the left endpoint of s (same with right endpoint)
\rightarrow Visit at most 4 nodes per level
$\rightarrow \mathrm{O}(\log n)$ per interval, and $\mathrm{O}(n \log n)$ total

Theorem: A segment tree for a set of n intervals can be built in $\mathrm{O}(n \log n)$ time and uses $\mathrm{O}(n \log n)$ space. All intervals that contain a query point can be reported in O($\log n+k)$ time.

2D Windowing Revisited

Input: A set S of n disjoint line segments in the plane
Task: Process S into a data structure such that all segments intersecting a
vertical query segment $\mathrm{q}:=\mathrm{q}_{\mathrm{x}} \times\left[\mathrm{q}_{\mathrm{y}}, \mathrm{q}_{\mathrm{y}}{ }^{\prime}\right]$
can be reported efficiently.

2D Windowing Revisited

Solution:

Segment tree with nested range tree

- Build segment tree T based on x intervals of segments in S.
\rightarrow each $\operatorname{Int}(v) \cong \operatorname{Int}(v) \times(-\infty, \infty)$ vertical slab
- $\mathrm{I}(v) \cong \mathrm{S}(v)$ canonical set of segments spanning vertical slab
- Store $S(v)$ in 1D range tree (binary search tree) $\mathrm{T}(v)$ based on vertical order of segments

2D Windowing Revisited

Query algorithm:

- \quad Search regularly for q_{x} in T
- In every visited vertex v report segments in $\mathrm{T}(v)$ between q_{y} and q'y (1D range query)
$\Rightarrow \mathrm{O}\left(\log n+k_{v}\right)$ time for $T(v)$
$\Rightarrow \mathrm{O}\left(\log ^{2} n+k\right)$ total

2D Windowing Summary

Theorem: Let S be a set of (interior-) disjoint line segments in the plane. The segments intersecting a vertical query segment (or an axis-parallel rectangular query window) can be reported in $\mathrm{O}\left(\log ^{2} n+k\right)$ time, with $\mathrm{O}(n \log n)$ preprocessing time and $O(n \log n)$ space.

