CMPS 3130/6130 Computational Geometry Spring 2015

Windowing Carola Wenk

Windowing

Input: A set *S* of *n* line segments in the plane

Query: Report all segments in *S* that intersect a given query window

Subproblem: Process a set of intervals on the line into a data structure which supports queries of the type: Report all intervals that contain a query point.

- \Rightarrow Interval trees
- \Rightarrow Segment trees

Interval Trees

Input: A set *I* of *n* intervals on the line.

Idea: Partition *I* into $I_{\text{left}} \cup I_{\text{mid}} \cup I_{\text{right}}$ where x_{mid} is the median of the 2*n* endpoints. Store I_{mid} twice as two lists of intervals: L_{left} sorted by

left endpoint and as L_{right} sorted by right endpoint.

CMPS 3130/6130 Computational Geometry

Lemma: An interval tree on a set of *n* intervals uses O(n) space and has height $O(\log n)$. It can be constructed recursively in $O(n \log n)$. time.

Proof: Each interval is stored in a set I_{mid} only once, hence O(n)space. In the worst case half the intervals are to the left and right of x_{mid} , hence the height is $O(\log n)$. Constructing the (sorted) lists takes $O(|I^{v}| + |I^{v}_{mid}| \log |I^{v}_{mid}|)$ time per vertex v. 4/13/15 4

Interval Tree Query

Algorithm QUERYINTERVALTREE(v, q_x)

Input. The root v of an interval tree and a query point q_x .

Output. All intervals that contain q_x .

- 1. if v is not a leaf
- 2. then if $q_x < x_{\text{mid}}(v)$
- 3. then Walk along the list \$\mathcal{L}_{left}(\nu)\$, starting at the interval with the leftmost endpoint, reporting all the intervals that contain \$q_x\$. Stop as soon as an interval does not contain \$q_x\$.
 4. OUTPRUNTER (left) = 0
- 4. QUERY INTERVALT REE $(lc(v), q_x)$
- 5. else Walk along the list \$\mathcal{L}_{right}(\nu)\$, starting at the interval with the rightmost endpoint, reporting all the intervals that contain \$q_x\$. Stop as soon as an interval does not contain \$q_x\$.
 6. QUERY INTERVALTREE(\$rc(\nu)\$, \$q_x\$)

Theorem: An interval tree on a set of *n* intervals can be constructed in $O(n \log n)$ time and uses O(n) space. All intervals that contain a query point can be reported in $O(\log n + k)$ time, where k =#reported intervals.

Proof: We spend $O(1+k_v)$ time at vertex v, where $k_v =$ #intervals reported at v. We visit at most 1 node at any depth.

- Let $I = \{s_1, ..., s_n\}$ be a set of *n* intervals (segments), and let $p_1, p_2, ..., p_m$ be the sorted list of distinct interval endpoints of *I*.
- Partition the real line into elementary intervals:
- $(-\infty, p_1), [p_1, p_1], (p_1, p_2), \dots, (p_{m-1}, p_m), [p_m, p_m], (p_m, \infty)$
- Construct a balanced binary search tree T with leaves corresponding to the elementary intervals

Elementary Intervals

- $Int(\mu)$:=elementary interval corresponding to leaf μ
- Int(v):=union of $Int(\mu)$ of all leaves in subtree rooted at v

Store segments as high as possible

Each vertex *v* stores (1) Int(v) and (2) the canonical subset $I(v) \subseteq I$: $I(v) \coloneqq \{s \in I \mid Int(v) \subseteq s \text{ and } Int(parent(v)) \not\subset s\}$

Store segments as high as possible

Each vertex *v* stores (1) Int(v) and (2) the canonical subset $I(v) \subseteq I$: $I(v) \coloneqq \{s \in I \mid Int(v) \subseteq s \text{ and } Int(parent(v)) \not\subset s\}$

Space

Lemma: A segment tree on *n* intervals uses $O(n \log n)$ space.

Proof: Any interval *s* is stored in at most two sets $I(v_1)$, $I(v_2)$ for two different vertices v_1 , v_2 at the same level of *T*. [If *s* was stored in $I(v_3)$ for a third vertex v_3 , then *s* would have to span from left to right, and Int(parent(v_2)) \subseteq *s*, hence *s* is cannot be stored in v_2 .] The tree is a balanced tree of height $O(\log n)$.

Segment Tree Query

Algorithm QUERYSEGMENTTREE(v, q_x)

Input. The root of a (subtree of a) segment tree and a query point q_x . *Output.* All intervals in the tree containing q_x .

- 1. Report all the intervals in I(v).
- 2. if v is not a leaf
- 3. **then if** $q_x \in \text{Int}(lc(v))$
- 4. **then** QUERYSEGMENTTREE($lc(v), q_x$)
- 5. else QUERYSEGMENTTREE $(rc(v), q_x)$

Runtime Analysis:

- Visit one node per level.
- Spend $O(1+k_v)$ time per node v.
- \Rightarrow Runtime O(log n + k)

Segment Tree Construction

- $\begin{array}{c|c} O(n \log n) \end{array} \begin{array}{c} 1. & \text{Sort interval endpoints of } I. \rightarrow \text{elementary intervals} \\ 2. & \text{Construct balanced BST on elementary intervals.} \end{array}$

 - 3. Determine Int(v) bottom-up.
 - 4. Compute canonical subsets by incrementally inserting intervals $s = [x, x'] \in I$ into T using InsertSegmentTree:

Algorithm INSERTSEGMENTTREE(*v*, *s*)

Input. The root of a (subtree of a) segment tree and an interval. Output. The interval will be stored in the subtree.

```
if Int(v) \subseteq s
1.
```

2. then store S at v

```
else if \operatorname{Int}(lc(v)) \cap S \neq \emptyset
3.
```

```
4.
           then INSERTSEGMENTTREE(lc(v), s)
```

```
5.
                     if \operatorname{Int}(rc(v)) \cap S \neq \emptyset
```

```
then INSERTSEGMENTTREE(rc(v), | s )
6.
```

Runtime:

- Each interval stored at most twice per level
- At most one node per level that contains the left endpoint of s (same with right endpoint)
- \rightarrow Visit at most 4 nodes per level
- $\rightarrow O(\log n)$ per interval, and $O(n \log n)$ total

Theorem: A segment tree for a set of n intervals can be built in $O(n \log n)$ time and uses $O(n \log n)$ space. All intervals that contain a query point can be reported in $O(\log n + k)$ time.

2D Windowing Revisited

Input: A set *S* of *n* disjoint line segments in the plane

Task: Process *S* into a data structure such that all segments intersecting a

vertical query segment $q:=q_x \times [q_y,q'_y]$ can be reported efficiently.

2D Windowing Revisited

Solution:

Segment tree with nested range tree

- Build segment tree *T* based on *x*intervals of segments in S.
 - \rightarrow each Int(v) \cong Int(v) \times (- ∞,∞) vertical slab
- $I(v) \cong S(v)$ canonical set of segments spanning vertical slab
- Store S(v) in 1D range tree (binary) search tree) T(v) based on vertical order of segments

2D Windowing Revisited

Query algorithm:

- Search regularly for q_x in T
- In every visited vertex v report segments in T(v) between q_v and

q'_y (1D range query)

- $\Rightarrow O(\log n + k_v)$ time for T(v)
- $\Rightarrow O(\log^2 n + k)$ total

 $\mathbf{q}_{\mathbf{x}}$

CS 6463 AT: Computational Geometry

2D Windowing Summary

Theorem: Let *S* be a set of (interior-) disjoint line segments in the plane. The segments intersecting a vertical query segment (or an axis-parallel rectangular query window) can be reported in $O(\log^2 n + k)$ time, with $O(n \log n)$ preprocessing time and $O(n \log n)$ space.

