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Triangulating a Polygon

• There is a simple O(n2) time algorithm based on the 
proof of Theorem 1.

• There is a very complicated O(n) time algorithm 
(Chazelle ’91) which is impractical to implement.

• We will discuss a practical O(n log n) time 
algorithm:
1. Split polygon into monotone polygons (O(n log n)

time)
2. Triangulate each monotone polygon (O(n) time)
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Monotone Polygons

• A simple polygon P is called monotone with respect to a 
line l iff for every line l’ perpendicular to l the intersection of 
P with l’ is connected.
– P is x-monotone iff l = x-axis
– P is y-monotone iff l = y-axis l’

l

x-monotone
(monotone 

w.r.t l)
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Monotone Polygons

• A simple polygon P is called monotone with respect to a 
line l iff for every line l’ perpendicular to l the intersection of 
P with l’ is connected.
– P is x-monotone iff l = x-axis
– P is y-monotone iff l = y-axis

l

NOT monotone w.r.t 
any line l

l’
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Test Monotonicity
How to test if a polygon is x-monotone?

– Find leftmost and rightmost vertices, O(n) time
→ Splits polygon boundary in upper chain and lower chain
– Walk from left to right along each chain, checking that x-

coordinates are non-decreasing. O(n) time.
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Triangulate an l-Monotone Polygon
• Using a greedy plane sweep in direction l
• Sort vertices by increasing x-coordinate (merging the upper and lower 

chains in O(n) time)
• Greedy: Triangulate everything you can to the left of the sweep line.
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Triangulate an l-Monotone Polygon
• Store stack (sweep line status) that contains vertices that have 

been encountered but may need more diagonals.

• Maintain invariant: Un-triangulated region 
has a funnel shape. The funnel consists of an 
upper and a lower chain. One chain is one line 
segment. The other is a reflex chain (interior 
angles >180°) which is stored on the stack.

• Update, case 1: new vertex lies on chain 
opposite of reflex chain. Triangulate.
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Triangulate an l-Monotone Polygon
• Update, case 2: new vertex lies on reflex chain

– Case a: The new vertex lies above line through 
previous two vertices: Triangulate.

– Case b: The new vertex lies below line through 
previous two vertices: Add to reflex chain (stack).
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Triangulate an l-Monotone Polygon
• Distinguish cases in constant time using half-plane 

tests
• Sweep line hits every vertex once, therefore each 

vertex is pushed on the stack at most once.
• Every vertex can be popped from the stack (in order to 

form a new triangle) at most once.
 Constant time per vertex
 O(n) total runtime
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Finding a Monotone Subdivision
• Monotone subdivision: subdivision of the simple polygon 

P into monotone pieces
• Use plane sweep to add diagonals to P that partition P into 

monotone pieces
• Events at which violation of x-monotonicity occurs:

split vertex merge vertexinterior
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Helpers (for split vertices)
• helper(e): Rightmost vertically visible vertex below e on 

the polygonal chain (left of sweep line) between e and e’, 
where  e’ is the polygon edge below e on the sweep line.

• Draw diagonal between v and helper(e), where e is the 
edge immediately above v.

split vertex v
u = helper(e)

vu

e

e’
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Sweep Line Algorithm
• Events: Vertices of polygon, sorted in increasing order by 

x-coordinate. (No new events will be added)
• Sweep line status: Balanced binary search tree storing the 

list of edges intersecting sweep line, sorted by y-coordinate. 
Also, helper(e) for every edge intersecting sweep line. 

• Event processing of vertex v:
1. Split vertex:

– Find edge e lying immediately above v.
– Add diagonal connecting v to helper(e). 
– Add two edges incident to v to sweep line status.
– Make v helper of e and of the lower of the two edges

e

v
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Sweep Line Algorithm
• Event processing of vertex v (continued):

2. Merge vertex:
– Delete two edges incident to v.
– Find edge e immediately above v and set helper(e)=v. 

3. Start vertex:
– Add two edges incident to v to sweep line status. 
– Set helper of upper edge to v.

4. End vertex: 
– Delete both edges from sweep line status.

5. Upper chain vertex:
– Replace left edge with right edge in sweep line status.
– Make v helper of new edge.

6. Lower chain vertex:
– Replace left edge with right edge in sweep line status.
– Make v helper of the edge lying above v.

e
v

v

v

v

v
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Sweep Line Algorithm
• Insert diagonals for merge vertices with “reverse” sweep
• Each update takes O(log n) time
• There are n events
→  Runtime to compute a monotone subdivision is O(n log n)


