
2/3/15 CMPS 3130/6130 Computational Geometry 1

CMPS 3130/6130 Computational Geometry
Spring 2015

Triangulations and
Guarding Art Galleries II

Carola Wenk

2/3/15 CMPS 3130/6130 Computational Geometry 2

Triangulating a Polygon

• There is a simple O(n2) time algorithm based on the
proof of Theorem 1.

• There is a very complicated O(n) time algorithm
(Chazelle ’91) which is impractical to implement.

• We will discuss a practical O(n log n) time
algorithm:
1. Split polygon into monotone polygons (O(n log n)

time)
2. Triangulate each monotone polygon (O(n) time)

2/3/15 CMPS 3130/6130 Computational Geometry 3

Monotone Polygons

• A simple polygon P is called monotone with respect to a
line l iff for every line l’ perpendicular to l the intersection of
P with l’ is connected.
– P is x-monotone iff l = x-axis
– P is y-monotone iff l = y-axis l’

l

x-monotone
(monotone

w.r.t l)

2/3/15 CMPS 3130/6130 Computational Geometry 4

Monotone Polygons

• A simple polygon P is called monotone with respect to a
line l iff for every line l’ perpendicular to l the intersection of
P with l’ is connected.
– P is x-monotone iff l = x-axis
– P is y-monotone iff l = y-axis l’

l

NOT x-monotone
(NOT monotone

w.r.t l)

2/3/15 CMPS 3130/6130 Computational Geometry 5

Monotone Polygons

• A simple polygon P is called monotone with respect to a
line l iff for every line l’ perpendicular to l the intersection of
P with l’ is connected.
– P is x-monotone iff l = x-axis
– P is y-monotone iff l = y-axis

l

NOT monotone w.r.t
any line l

l’

2/3/15 CMPS 3130/6130 Computational Geometry 6

Test Monotonicity
How to test if a polygon is x-monotone?

– Find leftmost and rightmost vertices, O(n) time
→ Splits polygon boundary in upper chain and lower chain
– Walk from left to right along each chain, checking that x-

coordinates are non-decreasing. O(n) time.

2/3/15 CMPS 3130/6130 Computational Geometry 7

Triangulating a Polygon

• There is a simple O(n2) time algorithm based on the
proof of Theorem 1.

• There is a very complicated O(n) time algorithm
(Chazelle ’91) which is impractical to implement.

• We will discuss a practical O(n log n) time
algorithm:
1. Split polygon into monotone polygons (O(n log n)

time)
2. Triangulate each monotone polygon (O(n) time)

2/3/15 CMPS 3130/6130 Computational Geometry 8

Triangulate an l-Monotone Polygon
• Using a greedy plane sweep in direction l
• Sort vertices by increasing x-coordinate (merging the upper and lower

chains in O(n) time)
• Greedy: Triangulate everything you can to the left of the sweep line.

1

2

3 4

l

5

6

7

8
9

10

11 12

13

2/3/15 CMPS 3130/6130 Computational Geometry 9

Triangulate an l-Monotone Polygon
• Store stack (sweep line status) that contains vertices that have

been encountered but may need more diagonals.

• Maintain invariant: Un-triangulated region
has a funnel shape. The funnel consists of an
upper and a lower chain. One chain is one line
segment. The other is a reflex chain (interior
angles >180°) which is stored on the stack.

• Update, case 1: new vertex lies on chain
opposite of reflex chain. Triangulate.

2/3/15 CMPS 3130/6130 Computational Geometry 10

Triangulate an l-Monotone Polygon
• Update, case 2: new vertex lies on reflex chain

– Case a: The new vertex lies above line through
previous two vertices: Triangulate.

– Case b: The new vertex lies below line through
previous two vertices: Add to reflex chain (stack).

2/3/15 CMPS 3130/6130 Computational Geometry 11

Triangulate an l-Monotone Polygon
• Distinguish cases in constant time using half-plane

tests
• Sweep line hits every vertex once, therefore each

vertex is pushed on the stack at most once.
• Every vertex can be popped from the stack (in order to

form a new triangle) at most once.
 Constant time per vertex
 O(n) total runtime

2/3/15 CMPS 3130/6130 Computational Geometry 12

Triangulating a Polygon

• There is a simple O(n2) time algorithm based on the
proof of Theorem 1.

• There is a very complicated O(n) time algorithm
(Chazelle ’91) which is impractical to implement.

• We will discuss a practical O(n log n) time
algorithm:
1. Split polygon into monotone polygons (O(n log n)

time)
2. Triangulate each monotone polygon (O(n) time)

2/3/15 CMPS 3130/6130 Computational Geometry 13

Finding a Monotone Subdivision
• Monotone subdivision: subdivision of the simple polygon

P into monotone pieces
• Use plane sweep to add diagonals to P that partition P into

monotone pieces
• Events at which violation of x-monotonicity occurs:

split vertex merge vertexinterior

2/3/15 CMPS 3130/6130 Computational Geometry 14

Helpers (for split vertices)
• helper(e): Rightmost vertically visible vertex below e on

the polygonal chain (left of sweep line) between e and e’,
where e’ is the polygon edge below e on the sweep line.

• Draw diagonal between v and helper(e), where e is the
edge immediately above v.

split vertex v
u = helper(e)

vu

e

e’

2/3/15 CMPS 3130/6130 Computational Geometry 15

Sweep Line Algorithm
• Events: Vertices of polygon, sorted in increasing order by

x-coordinate. (No new events will be added)
• Sweep line status: Balanced binary search tree storing the

list of edges intersecting sweep line, sorted by y-coordinate.
Also, helper(e) for every edge intersecting sweep line.

• Event processing of vertex v:
1. Split vertex:

– Find edge e lying immediately above v.
– Add diagonal connecting v to helper(e).
– Add two edges incident to v to sweep line status.
– Make v helper of e and of the lower of the two edges

e

v

2/3/15 CMPS 3130/6130 Computational Geometry 16

Sweep Line Algorithm
• Event processing of vertex v (continued):

2. Merge vertex:
– Delete two edges incident to v.
– Find edge e immediately above v and set helper(e)=v.

3. Start vertex:
– Add two edges incident to v to sweep line status.
– Set helper of upper edge to v.

4. End vertex:
– Delete both edges from sweep line status.

5. Upper chain vertex:
– Replace left edge with right edge in sweep line status.
– Make v helper of new edge.

6. Lower chain vertex:
– Replace left edge with right edge in sweep line status.
– Make v helper of the edge lying above v.

e
v

v

v

v

v

2/3/15 CMPS 3130/6130 Computational Geometry 17

Sweep Line Algorithm
• Insert diagonals for merge vertices with “reverse” sweep
• Each update takes O(log n) time
• There are n events
→ Runtime to compute a monotone subdivision is O(n log n)

