CMPS 3130/6130 Computational Geometry Spring 2015

Plane Sweep Algorithms II Carola Wenk

Geometric Intersections

- Important and basic problem in Computational Geometry
- Solid modeling: Build shapes by applying set operations (intersection, union).
- Robotics: Collision detection and avoidance
- Geographic information systems: Overlay two subdivisions (e.g., road network and river network)
- Computer graphics: Ray shooting to render scenes

Line Segment Intersection

- Input: A set $S=\left\{s_{1}, \ldots, s_{n}\right\}$ of (closed) line segments in \mathbf{R}^{2}
- Output: All intersection points between segments in S

Line Segment Intersection

- n line segments can intersect as few as 0 and as many as $\left[\begin{array}{l}n \\ 2\end{array}\right]=\mathrm{O}\left(n^{2}\right)$ times
- Simple algorithm: Try out all pairs of line segments \rightarrow Takes $\mathrm{O}\left(n^{2}\right)$ time \rightarrow Is optimal in worst case
- Challenge: Develop an output-sensitive algorithm
- Runtime depends on size k of the output
- Here: $0 \leq k \leq c n^{2}$, where c is a constant
- Our algorithm will have runtime: $O((n+k) \log n)$
- Best possible runtime: $O(n \log n+k)$
$\rightarrow \mathrm{O}\left(n^{2}\right)$ in worst case, but better in general

Complexity

- Why is runtime $\mathrm{O}(n \log n+k)$ optimal?
- The element uniqueness problem requires $\Omega(n \log n)$ time in algebraic decision tree model of computation (Ben-Or '83)
- Element uniqueness: Given n real numbers, are all of them distinct?
- Solve element uniqueness using line segment intersection:
- Take n numbers, convert into vertical line segments. There is an intersection iff there are duplicate numbers.
- If we could solve line segment intersection in o($n \log n$) time, i.e., strictly faster than $\Theta(n \log n)$, then element uniqueness could be solved faster. Contradiction.

Plane sweep algorithm

```
Algorithm Generic Plane Sweep:
Initialize sweep line status S at time }x=-
Store initial events in event queue Q, a priority queue ordered by }x\mathrm{ -coordinate
while Q}\not=
    / extract next event e:
    e = Q.extractMin();
    // handle event:
    Update sweep line status
    Discover new upcoming events and insert them into Q
```

- Cleanliness property:
- All intersections to the left of sweep line l have been reported
- Sweep line status:
- Store segments that intersect the sweep line l, ordered along the intersection with l.
- Events:
- Points in time when sweep line status changes combinatorially (i.e., the order of segments intersecting l changes)
\rightarrow Endpoints of segments (insert in beginning)
\rightarrow Intersection points (compute on the fly during plane sweep)

General position

Assume that "nasty" special cases don't happen:

- No line segment is vertical
- Two segments intersect in at most one point
- No three segments intersect in a common point

Hventorene

- Need to keep events sorted:
- Lexicographic order (first by x-coordinate, and if two events have same x-coordinate then by y-coordinate)
- Need to be able to remove next point, and insert new points in $\mathrm{O}(\log n)$ time
- Need to make sure not to process same event twice
\Rightarrow Use a priority queue (heap), and possibly extract multiples
\Rightarrow Or, use balanced binary search tree

Sweep Line Status

- Store segments that intersect the sweep line l, ordered along the intersection with l.
- Need to insert, delete, and find adjacent neighbor in $O(\log n)$ time
- Use balanced binary search tree, storing the order in which segments intersect l in leaves

Event Handling

1. Left segment endpoint

- Addl new segment to sweep line status
- Test adjacent segments on sweep line l for intersection with new segment (see Lemma)
- Add new intersection points to event queue

Event Handling

2. Intersection point

- Report new intersection point
- Two segments change order along l
\rightarrow Test new adjacent segments for new intersection points (to insert into event queue)

Event Handling

3. Right segment endpoint

- Delete segment from sweep line status
- Two segments become adjacent. Check for intersection points (to insert in event queue)

Intersection Lemma

- Lemma: Let s, s^{\prime} be two non-vertical segments whose interiors intersect in a single point p. Assume there is no third segment passing through p. Then there is an event point to the left of p where s and s^{\prime} become adjacent (and hence are tested for intersection).
- Proof: Consider placement of sweep line infinitesimally left of p. s and s ' are adjacent along sweep line. Hence there must have been a previous event point where s and s' become adjacents.

Runtime

- Sweep line status updates: $O(\log n)$
- Event queue operations: $\mathrm{O}(\log n)$, as the total number of stored events is $\leq 2 n+k$, and each operation takes time

$$
\begin{gathered}
\mathrm{O}(\log (2 n+k))=\mathrm{O}\left(\log n^{2}\right)=\mathrm{O}(\log n) \\
k=\mathrm{O}\left(n^{2}\right)
\end{gathered}
$$

- There are $\mathrm{O}(n+k)$ events. Hence the total runtime is $\mathrm{O}((n+k) \log n)$

