CMPS 3130/6130 Computational Geometry Spring 2015

Orthogonal Range Searching II
 Carola Wenk

Orthogonal range searching

Input: A set P of n points in d dimensions

Task: Process P into a data structure that allows fast orthogonal range queries. Given an axis-aligned box (in 2D, a rectangle)

- Report on the points inside the box:
- Are there any points?
- How many are there?
- List the points.

Orthogonal range searching: KD-trees

Let us start in 2D:
Input: A set P of n points in 2 dimensions
Task: Process P into a data structure that allows fast 2D orthogonal range queries: Report all points in P that lie in the query rectangle $\left[x, x^{\prime}\right] \times\left[y, y^{\prime}\right]$

KD trees

Idea: Recursively split P into two sets of the same size, alternatingly along a vertical or horizontal line through the median in x - or y-coordinates.

BuildKDTree

Idea: Recursively split P into two sets of the same size, alternatingly along a vertical or horizontal line through the median in x - or y-coordinates.

Algorithm BuildKdTree $(P$, depth $)$

Input. A set of points P and the current depth depth.
Output. The root of a kd-tree storing P.

1. if P contains only one point
2. then return a leaf storing this point
3. else if depth is even
4. then Split P into two subsets with a vertical line ℓ through the median x-coordinate of the points in P. Let P_{1} be the set of points to the left of ℓ or on ℓ, and let P_{2} be the set of points to the right of ℓ.
5.

else Split P into two subsets with a horizontal line ℓ through the median y-coordinate of the points in P. Let P_{1} be the set of points below ℓ or on ℓ, and let P_{2} be the set of points above ℓ.
6. $\quad v_{\text {left }} \leftarrow \operatorname{BuildKdTreE}\left(P_{1}\right.$, depth +1$)$
7. $\quad v_{\text {right }} \leftarrow \operatorname{BuildKdTrEE}\left(P_{2}\right.$, depth +1$)$
8. Create a node v storing ℓ, make $v_{\text {left }}$ the left child of v, and make $v_{\text {right }}$ the right child of v.
9. return v

BuildKDTree Analysis

- Sort P separately by x - and y-coordinate in advance
- Use these two sorted lists to find the median
- Pass sorted lists into the recursive calls
- Runtime:

$$
\begin{aligned}
& T(n)= \begin{cases}O(1) & , n=1 \\
O(n)+2 T\left(\frac{n}{2}\right), n>1\end{cases} \\
& =O(n \log n)
\end{aligned}
$$

- Storage: $\mathrm{O}(n)$, because it is a binary tree on n leaves

Regions

- lc(v)=left_child(v)
- region $(\mathrm{lc}(\mathrm{v}))=$ region $(\mathrm{v}) \cap \mathrm{l}(\mathrm{v})^{\text {left }}$
\Rightarrow Can be computed on the fly in constant time

SearchKDTree

Algorithm SEARCHKDTREE (v, R)
Input. The root of (a subtree of) a kd-tree, and a range R. Output. All points at leaves below v that lie in the range.

1. if v is a leaf
2. then Report the point stored at v if it lies in $R . I_{8}$
3. else if region $(l c(v))$ is fully contained in R
4.
5.
6.
7.
8.
9.
10.

then REPORTSUBTREE $(l c(v))$
else if region $(l c(v))$ intersects R
then SEARChKDTreE $(l c(v), R)$
if $\operatorname{region}(r c(v))$ is fully contained in R
then REportSubtree $(r c(v))$
else if region $(r c(v))$ intersects R
then $\operatorname{SEARCHKDTREE}(r c(v), R)$

How many nodes does a search touch?

SearchKDTree Analysis

Theorem: A kd-tree for a set of n points in the plane can be constructed in $\mathrm{O}(n \log n)$ time and uses $\mathrm{O}(n)$ space. A rectangular range query can be answered in $O(\sqrt{n}+k)$ time, where $k=$ \# reported points.
(Generalization to d dimensions: Also $\mathrm{O}(n \log n)$
construction time and $\mathrm{O}(n)$ space, but $O\left(n^{1-\frac{1}{d}}+k\right)$ query time.)

SearchKDTree Analysis

Proof Sketch:

- Sum of \# visited vertices in ReportSubtree is $\mathrm{O}(\mathrm{k})$
- \# visited vertices that are not in one of the reported subtrees = O(\# regions(v) intersected by a query line)
\Rightarrow Consider intersections with a vertical line only. Let $Q(n)=$ \# intersected regions in kd-tree of n points whose root contains a vertical splitting line
$\Rightarrow Q(\mathrm{n})=2+2 Q(n / 4)$, for $n>1$
$\Rightarrow Q(\mathrm{n})=\mathrm{O}(\sqrt{n})$

Summary Orthogonal Range Searching

Range trees

Query time: $\mathrm{O}\left(k+\log ^{d-1} n\right)$ to report k points
(uses fractional cascading in the last dimension)
Space: $O\left(n \log ^{d-1} n\right)$
Preprocessing time: $\mathrm{O}\left(n \log ^{d-1} n\right)$

KD-trees

Query time: $O\left(n^{1-\frac{1}{d}}+k\right)$ to report k points Space: $\mathrm{O}(n)$
Preprocessing time: $\mathrm{O}(n \log n)$

