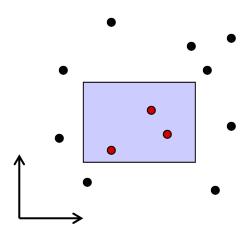
CMPS 3130/6130 Computational Geometry Spring 2015



Orthogonal Range Searching II

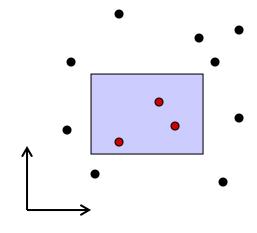
Carola Wenk

Orthogonal range searching

Input: A set *P* of *n* points in *d* dimensions

Task: Process *P* into a data structure that allows fast orthogonal range queries. Given an axis-aligned *box* (in 2D, a rectangle)

- Report on the points inside the box:
 - Are there any points?
 - How many are there?
 - List the points.



Orthogonal range searching: KD-trees

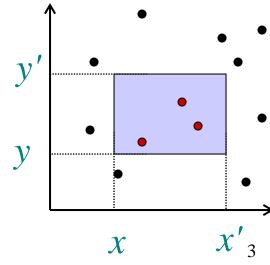
Let us start in 2D:

Input: A set P of n points in 2 dimensions

Task: Process *P* into a data structure that allows fast 2D orthogonal range queries:

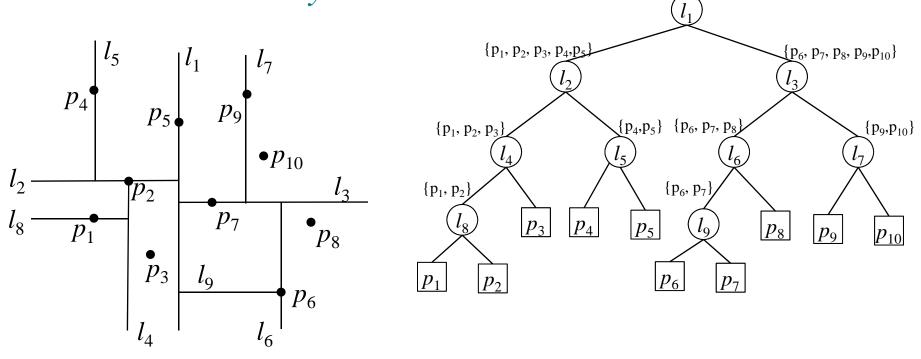
Report all points in *P* that lie in the query

rectangle $[x,x'] \times [y,y']$



KD trees

Idea: Recursively split *P* into two sets of the same size, alternatingly along a vertical or horizontal line through the median in *x*- or *y*-coordinates.



BuildKDTree

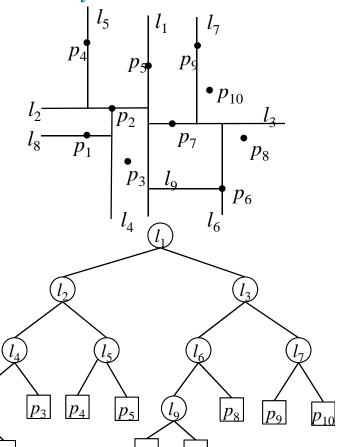
Idea: Recursively split P into two sets of the same size, alternatingly along a vertical or horizontal line through the median in x- or y-coordinates.

Algorithm BUILD KDTREE(*P*, *depth*)

Input. A set of points P and the current depth depth.

Output. The root of a kd-tree storing *P*.

- 1. **if** *P* contains only one point
- 2. **then return** a leaf storing this point
- 3. **else** if *depth* is even
- 4. **then** Split P into two subsets with a vertical line ℓ through the median x-coordinate of the points in P. Let P_1 be the set of points to the left of ℓ or on ℓ , and let P_2 be the set of points to the right of ℓ .
- 5. **else** Split P into two subsets with a horizontal line ℓ through the median y-coordinate of the points in P. Let P_1 be the set of points below ℓ or on ℓ , and let P_2 be the set of points above ℓ .
- 6. $v_{\text{left}} \leftarrow \text{BUILDKDTREE}(P_1, depth + 1)$
- 7. $v_{\text{right}} \leftarrow \text{BUILDKDTREE}(P_2, depth + 1)$
- 8. Create a node v storing ℓ , make v_{left} the left child of v, and make v_{right} the right child of v.
- 9. return v



5

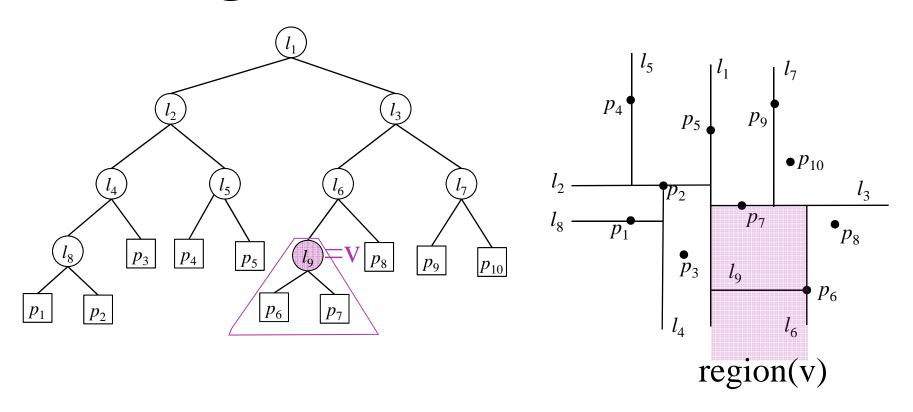
BuildKDTree Analysis

- Sort P separately by x- and y-coordinate in advance
- Use these two sorted lists to find the median
- Pass sorted lists into the recursive calls
- Runtime:

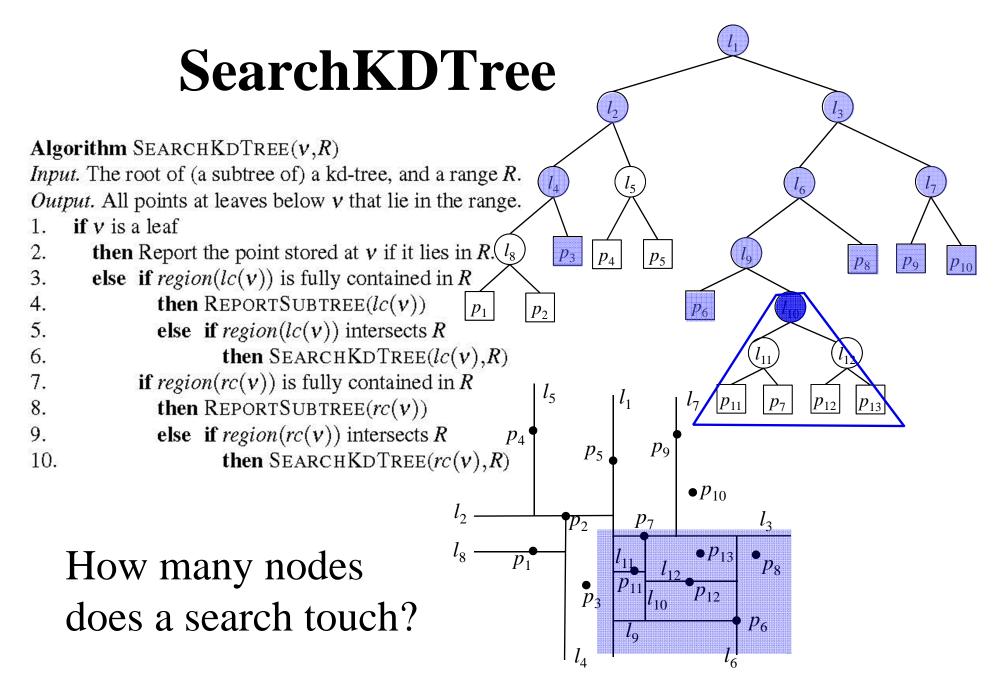
$$T(n) = \begin{cases} O(1) &, n = 1 \\ O(n) + 2T\left(\frac{n}{2}\right), n > 1 \end{cases}$$
$$= O(n \log n)$$

• Storage: O(n), because it is a binary tree on n leaves

Regions



- lc(v)=left_child(v)
- region(lc(v)) = region(v) \cap l(v)^{left}
- ⇒ Can be computed on the fly in constant time



SearchKDTree Analysis

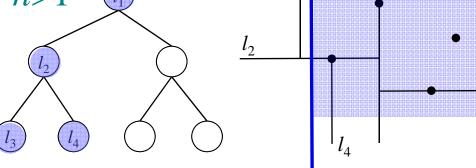
Theorem: A kd-tree for a set of n points in the plane can be constructed in $O(n \log n)$ time and uses O(n) space. A rectangular range query can be answered in $O(\sqrt{n} + k)$ time, where k = # reported points. (Generalization to d dimensions: Also $O(n \log n)$ construction time and O(n) space, but $O(n^{1-\frac{1}{d}} + k)$ query time.)

SearchKDTree Analysis

Proof Sketch:

- Sum of # visited vertices in ReportSubtree is O(k)
- # visited vertices that are not in one of the reported subtrees = O(# regions(v) intersected by a query line)
- \Rightarrow Consider intersections with a vertical line only. Let Q(n) = # intersected regions in kd-tree of n points whose root contains a vertical splitting line.

 $\Rightarrow Q(n) = O(\sqrt{n})$



Summary Orthogonal Range Searching

Range trees

Query time: $O(k + \log^{d-1} n)$ to report k points

(uses fractional cascading in the last dimension)

Space: $O(n \log^{d-1} n)$

Preprocessing time: $O(n \log^{d-1} n)$

KD-trees

Query time: $O(n^{1-\frac{1}{d}} + k)$ to report k points

Space: O(n)

Preprocessing time: $O(n \log n)$