CMPS 3130/6130 Computational Geometry Spring 2015

Orthogonal Range Searching

Carola Wenk

Orthogonal range searching

Input: *n* points in *d* dimensions

• E.g., representing a database of *n* records each with *d* numeric fields

Query: Axis-aligned box (in 2D, a rectangle)

- Report on the points inside the box:
 - Are there any points?
 - How many are there?
 - List the points.

Orthogonal range searching

Input: *n* points in *d* dimensions

Query: Axis-aligned box (in 2D, a rectangle)

Report on the points inside the box

Goal: Preprocess points into a data structure to support fast queries

- Primary goal: Static data structure
- In 1D, we will also obtain a dynamic data structure supporting insert and delete

1D range searching

In 1D, the query is an interval:

First solution:

- Sort the points and store them in an array
 - Solve query by binary search on endpoints.
 - Obtain a static structure that can list k answers in a query in $O(k + \log n)$ time.

Goal: Obtain a dynamic structure that can list k answers in a query in $O(k + \log n)$ time.

1D range searching

In 1D, the query is an interval:

New solution that extends to higher dimensions:

- Balanced binary search tree
 - New organization principle: Store points in the *leaves* of the tree.
 - Internal nodes store copies of the leaves to satisfy binary search property:
 - Node x stores in key[x] the maximum key of any leaf in the left subtree of x.

Example of a 1D range tree

key[x] is the maximum key of any leaf in the left subtree of x.

Example of a 1D range tree

key[x] is the maximum key of any leaf in the left subtree of x.

Example of a 1D range query

General 1D range query

Pseudocode, part 1: Find the split node

```
1D-RANGE-QUERY(T, [x_1, x_2])

w \leftarrow \text{root}[T]

while w is not a leaf and (x_2 \le key[w] \text{ or } key[w] < x_1)

do \text{ if } x_2 \le key[w]

then w \leftarrow left[w]

else w \leftarrow right[w]

// w is now the split node

[traverse left and right from w and report relevant subtrees]
```


Pseudocode, part 2: Traverse left and right from split node

```
1D-RANGE-QUERY(T, [x_1, x_2])
    [find the split node]
   // w is now the split node
   if w is a leaf
    then output the leaf w if x_1 \le key[w] \le x_2
    else v \leftarrow left[w]
                                                        // Left traversal
          while v is not a leaf
             do if x_1 \le key[v]
                 then output the subtree rooted at right[v]
                        v \leftarrow left[v]
                 else v \leftarrow right[v]
          output the leaf v if x_1 \le key[v] \le x_2
          [symmetrically for right traversal]
```

Analysis of 1D-Range-Query

Query time: Answer to range query represented by $O(\log n)$ subtrees found in $O(\log n)$ time. Thus:

- Can test for points in interval in $O(\log n)$ time.
- Can report all k points in interval in $O(k + \log n)$ time.
- Can count points in interval in O(log n) time

Space: O(n)

Preprocessing time: $O(n \log n)$

2D range trees

2D range trees

Store a *primary* 1D range tree for all the points based on *x*-coordinate.

Thus in $O(\log n)$ time we can find $O(\log n)$ subtrees representing the points with proper *x*-coordinate. How to restrict to points with proper *y*-coordinate?

2D range trees

Idea: In primary 1D range tree of *x*-coordinate, **every** node stores a **secondary** 1D range tree based on *y*-coordinate for all points in the subtree of the node. Recursively search within each.

2D range tree example

Primary tree

Analysis of 2D range trees

Query time: In $O(\log^2 n) = O((\log n)^2)$ time, we can represent answer to range query by $O(\log^2 n)$ subtrees. Total cost for reporting k points: $O(k + (\log n)^2)$.

Space: The secondary trees at each level of the primary tree together store a copy of the points. Also, each point is present in each secondary tree along the path from the leaf to the root. Either way, we obtain that the space is $O(n \log n)$.

Preprocessing time: $O(n \log n)$

d-dimensional range trees

Each node of the secondary y-structure stores a tertiary

z-structure representing the points in the subtree

rooted at the node, etc.

Save one log factor using fractional cascading

Query time: $O(k + \log^d n)$ to report k points.

Space: $O(n \log^{d-1} n)$

Preprocessing time: $O(n \log^{d-1} n)$

Search in Subsets

Given: Two sorted arrays A_1 and A, with $A_1 \subseteq A$

A query interval [l,r]

Task: Report all elements e in A_1 and A with $l \le e \le r$

Idea: Add pointers from A to A_1 :

 \rightarrow For each $a \in A$ add a pointer to the

smallest element $b \in A_1$ with $b \ge a$

Query: Find $l \in A$, follow pointer to A_1 . Both in A and A_1 sequentially output all elements in [l,r].

Runtime:
$$O((\log n + k) + (1 + k)) = O(\log n + k))$$

Search in Subsets (cont.)

Given: Three sorted arrays A_1 , A_2 , and A,

with $A_1 \subseteq A$ and $A_2 \subseteq A$

Runtime: $O((\log n + k) + (1+k) + (1+k)) = O(\log n + k))$

Range trees:

Fractional Cascading: Layered Range Tree

Replace 2D range tree with a layered range tree, using sorted arrays and pointers instead of the secondary range trees.

Preprocessing:

 $O(n \log n)$

Query:

 $O(\log n + k)$

4/9/15

Fractional Cascading: Layered Range Tree

[12,67]x[19,70]

Replace 2D range tree with a layered range tree, using sorted arrays and pointers instead of the secondary range trees.

Preprocessing:

 $O(n \log n)$

Query:

 $O(\log n + k)$

d-dimensional range trees

Query time: $O(k + \log^{d-1} n)$ to report k points, uses fractional cascading in the last dimension

Space: $O(n \log^{d-1} n)$

Preprocessing time: $O(n \log^{d-1} n)$

Best data structure to date:

Query time: $O(k + \log^{d-1} n)$ to report k points.

Space: O($n (\log n / \log \log n)^{d-1}$)

Preprocessing time: $O(n \log^{d-1} n)$