
2/5/15 CMPS 3130/6130 Computational Geometry 1

CMPS 3130/6130 Computational Geometry
Spring 2015

Planar Subdivisions and Point Location
Carola Wenk

Based on:
Computational Geometry: Algorithms and Applications

and David Mount’s lecture notes

p

2/5/15 CMPS 3130/6130 Computational Geometry 2

Planar Subdivision
• Let G=(V,E) be an undirected graph.
• G is planar if it can be embedded in the plane without edge crossings.

planar K5, not planar K3,3, not planar

• A planar embedding (=drawing) of
a planar graph G induces a planar
subdivision consisting of vertices,
edges, and faces.

2/5/15 CMPS 3130/6130 Computational Geometry 3

Doubly-Connected Edge List
• The doubly-connected edge list (DCEL) is a popular data structure to

store the geometric and topological information of a planar subdivision.
– It contains records for each face, edge, vertex
– (Each record might also store additional application-dependent attribute information.)
– It should enable us to perform basic operations needed in algorithms, such as walk

around a face, or walk from one face to a neighboring face

• The DCEL consists of:
– For each vertex v, its coordinates are stored in

Coordinates(v) and a pointer IncidentEdge(v) to a half-
edge that has v as it origin.

– Two oriented half-edges per edge, one in each direction.
These are called twins. Each of them has an origin and a
destination. Each half-edge e stores a pointer Origin(e),
a pointer Twin(e), a pointer IncidentFace(e) to the face
that it bounds, and pointers Next (e) and Prev(e) to the
next and previous half-edge on the boundary of
IncidentFace(e).

– For each face f, OuterComponent(f) is a pointer to some
half-edge on its outer boundary (null for unbounded
faces). It also stores a list InnerComponents(f) which
contains for each hole in the face a pointer to some half-
edge on the boundary of the hole.

2/5/15 CMPS 3130/6130 Computational Geometry 4

Complexity of a Planar Subdivision
• The complexity of a planar subdivision is:

#vertices + #edges + #faces = nv + ne + nf
• Euler’s formula for planar graphs:

1) nv - ne + nf ≥ 2
2) ne ≤ 3nv – 6

2) follows from 1):
Count edges. Every face is bounded by ≥ 3 edges.
Every edge bounds ≤ 2 faces.
 3nf ≤ 2ne nf ≤ 2/3ne
 2 ≤ nv - ne + nf ≤ nv - ne + 2/3 ne = nv – 1/3 ne
 2 ≤ nv – 1/3 ne

• Hence, the complexity of a planar subdivision is O(nv), i.e., linear in the
number of vertices.

2/5/15 CMPS 3130/6130 Computational Geometry 5

Point Location
• Point location task:

Preprocess a planar subdivision to efficiently
answer point-location queries of the type:
Given a point p=(px,py), find the face it lies in. p

• Important metrics:
– Time complexity for preprocessing

= time to construct the data structure
– Space needed to store the data structure
– Time complexity for querying the data structure

2/5/15 CMPS 3130/6130 Computational Geometry 6

Slab Method
• Slab method:

Draw a vertical line through each vertex. This
decomposes the plane into slabs.

• In each slab, the vertical order of the line segments remains constant.
• If we know in which slab p lies, we can perform binary search, using the

sorted order of the segments in the slab.
• Find slab that contains p by binary search on x among slab boundaries.
• A second binary search in slab determines the face containing p.
• Search complexity O(log n), but space complexity (n2) .

pp p

lower bound?

2/5/15 CMPS 3130/6130 Computational Geometry 7

Kirkpatrick’s Algorithm
• Needs a triangulation as input.
• Can convert a planar subdivision with

n vertices into a triangulation:
– Triangulate each face, keep same label as

original face.
– If the outer face is not a triangle:

• Compute the convex hull of the
subdivision.

• Triangulate pockets between the
subdivision and the convex hull.

• Add a large triangle (new vertices
a, b, c) around the convex hull, and
triangulate the space in-between.

• The size of the triangulated planar subdivision is still O(n), by Euler’s
formula.

• The conversion can be done in O(n log n) time.
• Given p, if we find a triangle containing p we also know the (label of) the

original subdivision face containing p.

a

b

c

p

2/5/15 CMPS 3130/6130 Computational Geometry 8

Kirkpatrick’s Hierarchy
• Compute a sequence T0, T1, …, Tk of increasingly coarser triangulations

such that the last one has constant complexity.
• The sequence T0, T1, …, Tk should have the following properties:

– T0 is the input triangulation, Tk is the outer triangle
– k O(log n)
– Each triangle in Ti+1 overlaps O(1) triangles in Ti

• How to build such a sequence?
– Need to delete vertices from Ti .
– Vertex deletion creates holes, which need

to be re-triangulated.

• How do we go from T0 of size O(n) to
Tk of size O(1) in k=O(log n) steps?
– In each step, delete a constant fraction

of vertices from Ti .
• We also need to ensure that each new triangle in Ti+1 overlaps with only

O(1) triangles in Ti .

2/5/15 CMPS 3130/6130 Computational Geometry 9

Vertex Deletion and Independent Sets
When creating Ti+1 from Ti , delete vertices from Ti
that have the following properties:

– Constant degree:
Each vertex v to be deleted has O(1) degree in
the graph Ti .

• If v has degree d, the resulting hole can be re-
triangulated with d-2 triangles

• Each new triangle in Ti+1 overlaps at most d original
triangles in Ti

– Independent sets:
No two deleted vertices are adjacent.

• Each hole can be re-triangulated independently.

2/5/15 CMPS 3130/6130 Computational Geometry 10

Independent Set Lemma
Lemma: Every planar graph on n vertices contains an
independent vertex set of size n/18 in which each
vertex has degree at most 8. Such a set can be
computed in O(n) time.

Use this lemma to construct Kirkpatrick’s hierarchy:
• Start with T0, and select an independent set S of

size n/18 in which each vertex has maximum
degree 8. [Never pick the outer triangle vertices a,
b, c.]

• Remove vertices of S, and re-triangulate holes.
• The resulting triangulation, T1, has at most 17/18n

vertices.
• Repeat the process to build the hierarchy, until Tk

equals the outer triangle with vertices a, b, c.
• The depth of the hierarchy is k = log18/17 n

a

b

c

2/5/15 CMPS 3130/6130 Computational Geometry 11

Hierarchy Example

Use this lemma to construct
Kirkpatrick’s hierarchy:
• Start with T0, and select an

independent set S of size n/18 in
which each vertex has maximum
degree 8. [Never pick the outer
triangle vertices a, b, c.]

• Remove vertices of S, and re-
triangulate holes.

• The resulting triangulation, T1, has
at most 17/18n vertices.

• Repeat the process to build the
hierarchy, until Tk equals the outer
triangle with vertices a, b, c.

• The depth of the hierarchy is
k = log18/17 n

2/5/15 CMPS 3130/6130 Computational Geometry 12

Hierarchy Data Structure
Store the hierarchy as a DAG:
• The root is Tk .
• Nodes in each level correspond to

triangles Ti .
• Each node for a triangle in Ti+1

stores pointers to all triangles of Ti
that it overlaps.

How to locate point p in the DAG:
• Start at the root. If p is outside of Tk

then p is in exterior face; done.
• Else, set to be the triangle at the

current level that contains p.
• Check each of the at most 6

triangles of Tk-1 that overlap with ,
whether they contain p. Update
and descend in the hierarchy until
reaching T0 .

• Output .

p

2/5/15 CMPS 3130/6130 Computational Geometry 13

Analysis
• Query time is O(log n): There are

O(log n) levels and it takes
constant time to move between
levels.

• Space complexity is O(n):
– Sum up sizes of all triangulations in

hierarchy.
– Because of Euler’s formula, it suffices

to sum up the number of vertices.
– Total number of vertices:

n + 17/18 n + (17/18)2 n + (17/18)3 n
+ …
≤ 1/(1-17/18) n = 18 n

• Preprocessing time is O(n log n):
– Triangulating the subdivision takes

O(n log n) time.
– The time to build the DAG is

proportional to its size.

13

p

2/5/15 CMPS 3130/6130 Computational Geometry 14

Independent Set Lemma
Lemma: Every planar graph on n vertices contains an
independent vertex set of size n/18 in which each
vertex has degree at most 8. Such a set can be
computed in O(n) time.

Proof:
Algorithm to construct independent set:
• Mark all vertices of degree ≥ 9
• While there is an unmarked vertex

• Let v be an unmarked vertex
• Add v to the independent set
• Mark v and all its neighbors

• Can be implemented in O(n) time: Keep list of unmarked
vertices, and store the triangulation in a data structure that
allows finding neighbors in O(1) time.

v

2/5/15 CMPS 3130/6130 Computational Geometry 15

Independent Set Lemma
Still need to prove existence of large independent set.
• Euler’s formula for a triangulated planar graph on n vertices:

#edges = 3n – 6
• Sum over vertex degrees:
 deg(v) = 2 #edges = 6n – 12 < 6n

• Claim: At least n/2 vertices have degree ≤ 8.
Proof: By contradiction. So, suppose otherwise.
 n/2 vertices have degree ≥ 9. The remaining have degree ≥ 3.
 The sum of the degrees is ≥ 9 n/2 + 3 n/2 = 6n. Contradiction.

• In the beginning of the algorithm, at least n/2 nodes are unmarked. Each
picked vertex v marks ≤ 8 other vertices, so including itself 9.

• Therefore, the while loop can be repeated at least n/18 times.
• This shows that there is an independent set of size at least n/18 in which

each node has degree ≤ 8.

v

2/5/15 CMPS 3130/6130 Computational Geometry 16

Summing Up
• Kirkpatrick’s point location data structure needs O(n log n)

preprocessing time, O(n) space, and has O(log n) query time.
• It involves high constant factors though.

• Next we will discuss a randomized point location scheme (based on
trapezoidal maps) which is more efficient in practice.

2/5/15 CMPS 3130/6130 Computational Geometry 17

Trapezoidal map
• Input: Set S={s1,…,sn} of non-intersecting line segments.
• Query: Given point p, report the segment directly above p.

• Create trapezoidal map by shooting two rays vertically (up and down)
from each vertex until a segment is hit. [Assume no segment is vertical.]

• Trapezoidal map = rays + segments
• Enclose S into bounding box to avoid

infinite rays.
• All faces in subdivision are trapezoids,

with vertical sides.
• The trapezoidal map has at most

6n+4 vertices and 3n+1 trapezoids:
• Each vertex shoots two rays, so, 2n(1+2)

vertices, plus 4 for the bounding box.
• Count trapezoids by vertex that creates its

left boundary segment: Corner of box for
one trapezoid, right segment endpoint for
one trapezoid, left segment endpoint for
at most two trapezoids. 3n+1

2/5/15 CMPS 3130/6130 Computational Geometry 18

Construction
• Randomized incremental construction
• Start with outer box which is a single trapezoid. Then add one segment

si at a time, in random order.

si

2/5/15 CMPS 3130/6130 Computational Geometry 19

Construction
• Let Si={s1,…, si}, and let Ti be the trapezoidal map for Si.
• Add si to Ti-1.
• Find trapezoid containing left endpoint of si. [Point location; details later]
• Thread si through Ti-1, by walking through it and identifying trapezoids

that are cut.
• “Fix trapezoids up” by shooting rays from left and right endpoint of si and

trim earlier rays that are cut by si.

si

2/5/15 CMPS 3130/6130 Computational Geometry 20

Analysis
Observation: The final trapezoidal map Ti does not depend on the order in
which the segments were inserted.
Lemma: Ignoring the time spent for point location, the insertion of si takes
O(ki) time, where ki is the number of newly created trapezoids.
Proof:

• Let k be the number of ray shots interrupted by si.
• Each endpoint of si shoots two rays

 ki =k+4 rays need to be processed
• If k=0, we get 4 new trapezoids.
• Create a new trapezoid for each interrupted ray shot; takes O(1)

time with DCEL

sisi

2/5/15 CMPS 3130/6130 Computational Geometry 21

Analysis

1 2 3 n/2

n/2+1
n/2+2

n

• Insert segments in random order:
– = {all possible permutations/orders of segments}; || = n! for n segments
– ki = ki() for some random order
– We will show that E(ki) = O(1)
– Expected runtime E(T) = E(i=1ki) = i=1E(ki) = O(i=1 1) = O(n)n n n

linearity of expectation

2/5/15 CMPS 3130/6130 Computational Geometry 22

Analysis
Theorem: E(ki) = O(1), where ki is the number of newly created trapezoids
created upon insertion of si, and the expectation is taken over all segment
permutations of Si={s1,…, si}.
Proof:

• Ti does not depend on the order in which segments s1,…, si were
added.

• Of s1,…, si , what is the probability that a particular segment s was
added last?

• 1/i
• We want to compute the number of trapezoids that would have

been created if s was added last.

2/5/15 CMPS 3130/6130 Computational Geometry 23

Analysis

• Random variable ki(s)= #trapezoids added when s was inserted last in Si.
• ki(s)=∑ ∆,∆∈

• E(ki)=∑ k 	 	 ∑ k ∑ ∑ ∆,∆∈∈∈∈

2/5/15 CMPS 3130/6130 Computational Geometry 24

Analysis

• Random variable ki(s)= #trapezoids added when s was inserted last in Si.
• ki(s)=∑ ∆,∆∈

• E(ki)=∑ k 	 	 ∑ k ∑ ∑ ∆,∆∈∈∈∈

• = ∑ ∑ ∆,∈∆∈
• How many segments does depend on? At most 4.
• Also, Ti has O(i) trapezoids (by Euler’s formula).
• E(ki)= ∑ ∑ ∆,∈∆∈ = ∑ 4 4|∆∈ | 1

2/5/15 CMPS 3130/6130 Computational Geometry 25

Point Location
• Build a point location data structure; a DAG, similar to Kirkpatrick’s
• DAG has two types of internal nodes:

• x-node (circle): contains the x-coordinate of a segment endpoint.
• y-node (hexagon): pointer to a segment

• The DAG has one leaf for each trapezoid.

• Children of x-node: Space to the left and right of x-coordinate
• Children of y-node: Space above and below the segment
• y-node is only searched when the query’s x-coordinate is within the

segment’s span.
• Encodes trapezoidal decomposition and enables point location

during construction.

2/5/15 CMPS 3130/6130 Computational Geometry 26

Construction
• Incremental construction during trapezoidal map

construction.
• When a segment s is added, modify the DAG.

• Some leaves will be replaced by new
subtrees.

• Each old trapezoid will overlap O(1) new
trapezoids.

• Each trapezoid appears exactly once as a leaf.

• Changes are highly local.
• If s passes entirely through trapezoid t, then t is

replaced with two new trapezoids t’ and t’’ .
• Add new y-node as parent of t’ and t’’ , in

order to facilitate search later.
• If an endpoint of s lies in trapezoid t, then add

an x-node to decide left/right and a y-node for
the segment.

2/5/15 CMPS 3130/6130 Computational Geometry 27

Inserting a Segment
• Insert segment s3.

s3

s3
p3

q3

p3

q3

s3
s3

2/5/15 CMPS 3130/6130 Computational Geometry 28

Analysis
• Space: Expected O(n)

• Size of data structure = number of trapezoids = O(n) in expectation,
since an expected O(1) trapezoids are created during segment
insertion

• Query time: Expected O(log n)
• Construction time: Expected O(n log n) follows from query time

• Proof that the query time is expected O(log n):
• Fix a query point Q.
• Consider how Q moves through the trapezoidal map as it is being

constructed as new segments are inserted.
• Search complexity = number of trapezoids encountered by Q

2/5/15 CMPS 3130/6130 Computational Geometry 29

Query Time
• Let i be the trapezoid containing Q after the insertion of ith segment.
• If i = i-1 then the insertion does not affect Q’s trapezoid (E.g., QB).
• If i ≠ i-1 then the insertion deleted Q’s trapezoid, and Q needs to be

located among the at most 4 new trapezoids.

• Q could fall 3 levels in the DAG.

s3
s3

2/5/15 CMPS 3130/6130 Computational Geometry 30

Query Time
• Let Xi be the # nodes on path created in iteration i, and

let Pi be the probability that there exists a node in iteration i, i.e., i ≠ i-1
• The expected search path length is E ∑ ∑ 	 ∑ 3	

by lin. of expectation and since Q can drop at most 3 levels.
• Claim: Pi ≤ 4/i .

• Backwards analysis: Consider deleting segments, instead of inserting.
• Trapezoid i depends on ≤ 4 segments. The probability that the ith

segment is one of these 4 is ≤ 4/i .
• The expected search path length is at most

∑ 3	 ∑ 3	 12∑ 	 Θ log	 Harmonic number

s3
s3

