CMPS 3130/6130 Computational Geometry Spring 2015

Planar Subdivisions and Point Location Carola Wenk

Computational Geometry: Algorithms and Applications and David Mount's lecture notes

Planar Subdivision

- Let $G=(V, E)$ be an undirected graph.
- G is planar if it can be embedded in the plane without edge crossings.

K_{5}, not planar

$K_{3,3}$, not planar
- A planar embedding (=drawing) of a planar graph G induces a planar subdivision consisting of vertices, edges, and faces.

Doubly-Connected Edge List

- The doubly-connected edge list (DCEL) is a popular data structure to store the geometric and topological information of a planar subdivision.
- It contains records for each face, edge, vertex
- (Each record might also store additional application-dependent attribute information.)
- It should enable us to perform basic operations needed in algorithms, such as walk around a face, or walk from one face to a neighboring face
- The DCEL consists of:
- For each vertex v, its coordinates are stored in

Coordinates(v) and a pointer IncidentEdge(v) to a halfedge that has v as it origin.

Two oriented half-edges per edge, one in each direction. These are called twins. Each of them has an origin and a destination. Each half-edge e stores a pointer Origin (e), a pointer Twin(e), a pointer IncidentFace(e) to the face that it bounds, and pointers Next (e) and $\operatorname{Prev}(\mathrm{e})$ to the next and previous half-edge on the boundary of IncidentFace(e).

- For each face f, OuterComponent (f) is a pointer to some half-edge on its outer boundary (null for unbounded faces). It also stores a list InnerComponents(f) which contains for each hole in the face a pointer to some half-
 edge on the boundary of the hole.

Complexity of a Planar Subdivision

- The complexity of a planar subdivision is:
\#vertices + \#edges + \#faces $=n_{v}+n_{e}+n_{f}$
- Euler's formula for planar graphs:

1) $n_{v}-n_{e}+n_{f} \geq 2$
2) $n_{e} \leq 3 n_{v}-6$
3) follows from 1):

Count edges. Every face is bounded by ≥ 3 edges.
Every edge bounds ≤ 2 faces.

$$
\begin{aligned}
& \Rightarrow 3 n_{f} \leq 2 n_{e} \Rightarrow n_{f} \leq 2 / 3 n_{e} \\
& \Rightarrow 2 \leq n_{v}-n_{e}+n_{f} \leq n_{v}-n_{e}+2 / 3 n_{e}=n_{v}-1 / 3 n_{e} \\
& \Rightarrow 2 \leq n_{v}-1 / 3 n_{e}
\end{aligned}
$$

- Hence, the complexity of a planar subdivision is $\mathrm{O}\left(n_{v}\right)$, i.e., linear in the number of vertices.

Point Location

- Point location task:

Preprocess a planar subdivision to efficiently answer point-location queries of the type:
Given a point $p=\left(p_{x}, p_{y}\right)$, find the face it lies in.

- Important metrics:
- Time complexity for preprocessing = time to construct the data structure
- Space needed to store the data structure
- Time complexity for querying the data structure

Slab Method

- Slab method:

Draw a vertical line through each vertex. This decomposes the plane into slabs.

- In each slab, the vertical order of the line segments remains constant.
- If we know in which slab p lies, we can perform binary search, using the sorted order of the segments in the slab.
- Find slab that contains p by binary search on x among slab boundaries.
- A second binary search in slab determines the face containing p.
- Search complexity $\mathrm{O}(\log n)$, but space complexity $\Theta\left(n^{2}\right)$.

Kirkpatrick's Algorithm

- Needs a triangulation as input.
- Can convert a planar subdivision with n vertices into a triangulation:
- Triangulate each face, keep same label as original face.
- If the outer face is not a triangle:
- Compute the convex hull of the subdivision.
- Triangulate pockets between the subdivision and the convex hull.
- Add a large triangle (new vertices $\mathbf{a}, \mathbf{b}, \mathbf{c}$) around the convex hull, and
 triangulate the space in-between.
- The size of the triangulated planar subdivision is still $\mathrm{O}(n)$, by Euler's formula.
- The conversion can be done in $\mathrm{O}(n \log n)$ time.
- Given p, if we find a triangle containing p we also know the (label of) the original subdivision face containing p.

Kirkpatrick's Hierarchy

- Compute a sequence $T_{0}, T_{1}, \ldots, T_{\mathrm{k}}$ of increasingly coarser triangulations such that the last one has constant complexity.
- The sequence $T_{0}, T_{1}, \ldots, T_{\mathrm{k}}$ should have the following properties:
- T_{0} is the input triangulation, T_{k} is the outer triangle
- $k \in \mathrm{O}(\log n)$
- Each triangle in $T_{\mathrm{i}+1}$ overlaps $\mathrm{O}(1)$ triangles in T_{i}
- How to build such a sequence?
- Need to delete vertices from T_{i}.
- Vertex deletion creates holes, which need to be re-triangulated.
- How do we go from T_{0} of size $\mathrm{O}(n)$ to T_{k} of size $\mathrm{O}(1)$ in $k=\mathrm{O}(\log n)$ steps?
- In each step, delete a constant fraction of vertices from T_{i}.

- We also need to ensure that each new triangle in T_{i+1} overlaps with only $\mathrm{O}(1)$ triangles in T_{i}.

Vertex Deletion and Independent Sets

When creating $T_{\mathrm{i}+1}$ from T_{i}, delete vertices from T_{i} that have the following properties:

- Constant degree: Each vertex \mathbf{v} to be deleted has $\mathrm{O}(1)$ degree in the graph T_{i}.
- If \mathbf{v} has degree d, the resulting hole can be retriangulated with $d-2$ triangles
- Each new triangle in T_{i+1} overlaps at most d original triangles in T_{i}
- Independent sets:

No two deleted vertices are adjacent.

- Each hole can be re-triangulated independently.

Independent Set Lemma

Lemma: Every planar graph on n vertices contains an independent vertex set of size $n / 18$ in which each vertex has degree at most 8 . Such a set can be computed in $\mathrm{O}(n)$ time.

Use this lemma to construct Kirkpatrick's hierarchy:

- Start with T_{0}, and select an independent set S of size $n / 18$ in which each vertex has maximum degree 8. [Never pick the outer triangle vertices a, b, c.]
- Remove vertices of S, and re-triangulate holes.
- The resulting triangulation, T_{1}, has at most $17 / 18 n$
 vertices.
- Repeat the process to build the hierarchy, until T_{k} equals the outer triangle with vertices $\mathbf{a}, \mathbf{b}, \mathbf{c}$.
- The depth of the hierarchy is $k=\log _{18 / 17} n$

Hierarchy Example

Use this lemma to construct Kirkpatrick's hierarchy:

- Start with T_{0}, and select an independent set S of size $n / 18$ in which each vertex has maximum degree 8 . [Never pick the outer triangle vertices $\mathbf{a}, \mathbf{b}, \mathbf{c}$.]
- Remove vertices of S, and retriangulate holes.
- The resulting triangulation, T_{1}, has at most $17 / 18 n$ vertices.
- Repeat the process to build the hierarchy, until T_{k} equals the outer triangle with vertices $\mathbf{a}, \mathbf{b}, \mathbf{c}$.
- The depth of the hierarchy is

$$
k=\log _{18 / 17} n
$$

Hierarchy Data Structure

Store the hierarchy as a DAG:

- The root is T_{k}.
- Nodes in each level correspond to triangles T_{i}.
- Each node for a triangle in $T_{\mathrm{i}+1}$ stores pointers to all triangles of T_{i} that it overlaps.

How to locate point p in the DAG:

- Start at the root. If p is outside of T_{k} then p is in exterior face; done.
- Else, set Δ to be the triangle at the current level that contains p.
- Check each of the at most 6 triangles of $T_{\mathrm{k}-1}$ that overlap with Δ, whether they contain p. Update Δ and descend in the hierarchy until reaching T_{0}.
- Output Δ.

Analysis

- Query time is $\mathrm{O}(\log n)$: There are $\mathrm{O}(\log n)$ levels and it takes constant time to move between levels.
- Space complexity is $\mathrm{O}(n)$:
- Sum up sizes of all triangulations in hierarchy.
- Because of Euler's formula, it suffices to sum up the number of vertices.
- Total number of vertices:

$$
\begin{aligned}
& n+17 / 18 n+(17 / 18)^{2} n+(17 / 18)^{3} n \\
& +\ldots \dddot{1} /(1-17 / 18) n=18 n \\
& \leq
\end{aligned}
$$

Independent Set Lemma

Lemma: Every planar graph on n vertices contains an independent vertex set of size $n / 18$ in which each vertex has degree at most 8 . Such a set can be computed in $\mathrm{O}(n)$ time.

Proof:

Algorithm to construct independent set:

- Mark all vertices of degree ≥ 9
- While there is an unmarked vertex
- Let \mathbf{v} be an unmarked vertex
- Add \mathbf{v} to the independent set
- Mark vand all its neighbors

- Can be implemented in $\mathrm{O}(n)$ time: Keep list of unmarked vertices, and store the triangulation in a data structure that allows finding neighbors in $\mathrm{O}(1)$ time.

Independent Set Lemma

Still need to prove existence of large independent set.

- Euler's formula for a triangulated planar graph on n vertices:

$$
\text { \#edges }=3 n-6
$$

- Sum over vertex degrees:

$$
\sum_{v} \operatorname{deg}(v)=2 \# \text { edges }=6 n-12<6 n
$$

- Claim: At least $n / 2$ vertices have degree ≤ 8.

Proof: By contradiction. So, suppose otherwise.
$\rightarrow n / 2$ vertices have degree ≥ 9. The remaining have degree ≥ 3.
\rightarrow The sum of the degrees is $\geq 9 n / 2+3 n / 2=6 n$. Contradiction.

- In the beginning of the algorithm, at least $n / 2$ nodes are unmarked. Each picked vertex \mathbf{v} marks ≤ 8 other vertices, so including itself 9 .
- Therefore, the while loop can be repeated at least $n / 18$ times.
- This shows that there is an independent set of size at least $n / 18$ in which each node has degree ≤ 8.

Summing Up

- Kirkpatrick's point location data structure needs $\mathrm{O}(n \log n)$ preprocessing time, $\mathrm{O}(n)$ space, and has $\mathrm{O}(\log n)$ query time.
- It involves high constant factors though.
- Next we will discuss a randomized point location scheme (based on trapezoidal maps) which is more efficient in practice.

Trapezoidal map

- Input: Set $S=\left\{s_{1}, \ldots, S_{n}\right\}$ of non-intersecting line segments.
- Query: Given point p, report the segment directly above p.
- Create trapezoidal map by shooting two rays vertically (up and down) from each vertex until a segment is hit. [Assume no segment is vertical.]
- Trapezoidal map = rays + segments
- Enclose S into bounding box to avoid infinite rays.
- All faces in subdivision are trapezoids, with vertical sides.
- The trapezoidal map has at most $6 n+4$ vertices and $3 n+1$ trapezoids:
- Each vertex shoots two rays, so, $2 n(1+2)$ vertices, plus 4 for the bounding box.
- Count trapezoids by vertex that creates its left boundary segment: Corner of box for one trapezoid, right segment endpoint for one trapezoid, left segment endpoint for
 at most two trapezoids. $\rightarrow 3 n+1$

Construction

- Randomized incremental construction
- Start with outer box which is a single trapezoid. Then add one segment s_{i} at a time, in random order.

Construction

- Let $S_{i}=\left\{s_{1}, \ldots, s_{i}\right\}$, and let T_{i} be the trapezoidal map for S_{i}.
- Add s_{i} to T_{i-1}.
- Find trapezoid containing left endpoint of s_{i}. [Point location; details later]
- Thread s_{i} through T_{i-1}, by walking through it and identifying trapezoids that are cut.
- "Fix trapezoids up" by shooting rays from left and right endpoint of s_{i} and trim earlier rays that are cut by s_{i}.

Analysis

Observation: The final trapezoidal map T_{i} does not depend on the order in which the segments were inserted.
Lemma: Ignoring the time spent for point location, the insertion of s_{i} takes $\mathrm{O}\left(k_{i}\right)$ time, where k_{i} is the number of newly created trapezoids.

Proof:

- Let k be the number of ray shots interrupted by s_{i}.
- Each endpoint of s_{i} shoots two rays
$\rightarrow k_{i}=k+4$ rays need to be processed
- If $k=0$, we get 4 new trapezoids.
- Create a new trapezoid for each interrupted ray shot; takes $O(1)$ time with DCEL

Analysis

Total runtime (without point location): $\sum_{\mathrm{i}=1}^{n} k_{i}$

- Best case: $k_{i}=O(1)$, so $\sum_{\mathrm{i}=1}^{n} k_{i}=O(n)$.
- Worst case: $k_{i}=O(i)$, so $\sum_{\mathrm{i}=1}^{n} k_{i}=O\left(n^{2}\right)$.

- Insert segments in random order:
- $\Pi=\{$ all possible permutations/orders of segments $\} ;|\Pi|=n!$ for n segments
- $k_{i}=k_{i}(\pi)$ for some random order $\pi \in \Pi$
- We will show that $\mathrm{E}\left(k_{i}\right)=\mathrm{O}(1)$
- \Rightarrow Expected runtime $\mathrm{E}(T)=\mathrm{E}\left(\sum_{i=1}^{n} k_{i}\right)=\sum_{i=1}^{n} \mathrm{E}\left(k_{i}\right)=\mathrm{O}\left(\sum_{i=1}^{n} 1\right)=\mathrm{O}(n)$
linearity of expectation

Analysis

Theorem: $\mathrm{E}\left(k_{i}\right)=\mathrm{O}(1)$, where k_{i} is the number of newly created trapezoids created upon insertion of s_{i}, and the expectation is taken over all segment permutations of $S_{i}=\left\{s_{1}, \ldots, s_{i}\right\}$.

Proof:

- T_{i} does not depend on the order in which segments s_{1}, \ldots, s_{i} were added.
- Of s_{1}, \ldots, s_{i}, what is the probability that a particular segment s was added last?
- $1 / i$
- We want to compute the number of trapezoids that would have been created if s was added last.

Analysis

- A trapezoid Δ depends on s if Δ would be created by s if s was added last.
- We want to count trapezoids that depend on s, and then compute the expectation over all choices of s.
- Let $\delta(\Delta, s)=1$, if Δ depends on s. And $\delta(\Delta, s)=0$, otherwise.

The trapezoids that depend on s

Segments that Δ depends on.

- Random variable $k_{i}(s)=$ \#trapezoids added when s was inserted last in S_{i}.
- $k_{i}(s)=\sum_{\Delta \in T_{i}} \delta(\Delta, s)$
- $E\left(k_{i}\right)=\sum_{s \in S_{i}} k_{i}(s) P(s)=\frac{1}{i} \sum_{s \in S_{i}} k_{i}(s)=\frac{1}{i} \sum_{s \in S_{i}} \sum_{\Delta \in T_{i}} \delta(\Delta, s)$

Analysis

The trapezoids that depend on s

Segments that Δ depends on.

- Random variable $k_{i}(s)=$ \#trapezoids added when s was inserted last in S_{i}.
- $k_{i}(s)=\sum_{\Delta \in T_{i}} \delta(\Delta, s)$
- $E\left(k_{i}\right)=\sum_{s \in S_{i}} k_{i}(s) P(s)=\frac{1}{i} \sum_{s \in S_{i}} k_{i}(s)=\frac{1}{i} \sum_{s \in S_{i}} \sum_{\Delta \in T_{i}} \delta(\Delta, s)$
- $\quad=\frac{1}{i} \sum_{\Delta \in T_{i}} \sum_{s \in S_{i}} \delta(\Delta, s)$
- How many segments does Δ depend on? At most 4 .
- Also, T_{i} has $O(i)$ trapezoids (by Euler's formula).
- $E\left(k_{i}\right)=\frac{1}{i} \sum_{\Delta \in T_{i}} \sum_{s \in S_{i}} \delta(\Delta, s)=\frac{1}{i} \sum_{\Delta \in T_{i}} 4=\frac{1}{i} 4\left|T_{i}\right|=\frac{1}{i} O(i)=O(1)$

Point Location

- Build a point location data structure; a DAG, similar to Kirkpatrick's
- DAG has two types of internal nodes:
- x-node (circle): contains the x-coordinate of a segment endpoint.
- y-node (hexagon): pointer to a segment
- The DAG has one leaf for each trapezoid.

- Children of x-node: Space to the left and right of x-coordinate
- Children of y-node: Space above and below the segment
- y-node is only searched when the query's x-coordinate is within the segment's span.
- \Rightarrow Encodes trapezoidal decomposition and enables point location during construction.

Construction

- Incremental construction during trapezoidal map construction.
- When a segment s is added, modify the DAG.
- Some leaves will be replaced by new subtrees.
- Each old trapezoid will overlap $O(1)$ new
 trapezoids.
- Each trapezoid appears exactly once as a leaf.
- Changes are highly local.
- If s passes entirely through trapezoid t, then t is replaced with two new trapezoids t^{\prime} and $t^{\prime \prime}$.
- Add new y-node as parent of t^{\prime} and $t^{\prime \prime}$, in order to facilitate search later.
- If an endpoint of s lies in trapezoid t, then add an x-node to decide left/right and a y-node for the segment.

Inserting a Segment

- Insert segment s_{3}.

Analysis

- Space: Expected $O(n)$
- Size of data structure $=$ number of trapezoids $=O(n)$ in expectation, since an expected $O(1)$ trapezoids are created during segment insertion
- Query time: Expected $O(\log n)$
- Construction time: Expected $O(n \log n)$ follows from query time
- Proof that the query time is expected $O(\log n)$:
- Fix a query point Q.
- Consider how Q moves through the trapezoidal map as it is being constructed as new segments are inserted.
- Search complexity $=$ number of trapezoids encountered by Q

2/5/15

CMPS 3130/6130 Computational Geometry

Query Time

- Let Δ_{i} be the trapezoid containing Q after the insertion of i th segment.
- If $\Delta_{i}=\Delta_{i-1}$ then the insertion does not affect Q 's trapezoid (E.g., $Q \in B$).
- If $\Delta_{i} \neq \Delta_{i-1}$ then the insertion deleted Q 's trapezoid, and Q needs to be located among the at most 4 new trapezoids.

- Q could fall 3 levels in the DAG.

Query Time

- Let X_{i} be the \# nodes on path created in iteration i, and let P_{i} be the probability that there exists a node in iteration i, i.e., $\Delta_{i} \neq \Delta_{i-1}$
- The expected search path length is $\mathrm{E}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} E\left(X_{i}\right) \leq \sum_{i=1}^{n} 3 P_{i}$ by lin. of expectation and since Q can drop at most 3 levels.
- Claim: $P_{i} \leq 4 / i$.
- Backwards analysis: Consider deleting segments, instead of inserting.
- Trapezoid Δ_{i} depends on ≤ 4 segments. The probability that the i th segment is one of these 4 is $\leq 4 / i$.
- The expected search path length is at most

$$
\sum_{i=1}^{n} 3 P_{i}=\sum_{i=1}^{n} 3 \frac{4}{i}=12 \sum_{i=1}^{n} \frac{1}{i}=\Theta(\log n)
$$

Harmonic number

CMPS 3130/6130 Computatıonal Geometry

30

