CMPS 3130/6130 Computational Geometry Spring 2015

Motion Planning

Carola Wenk

Robot motion planning

- Given: A floor plan (2d polygonal region with obstacles), and a robot (2D simple polygon)
- Task: Find a collision-free path from start to end

- Robot R is a simple polygon; $R=R(0,0)$
- Let $R(x, y)=R+\binom{x}{y}$
R translated by $\vec{x}=\binom{x}{y}$

reference point
- Add rotations: $R(x, y, \varphi)$

Configuration space

- \# parameters = degrees of freedom (DOF)
- Parameter space = "Configuration space" C:
- 2D translating: configuration space is $\mathbf{C}=\mathbf{R}^{2}$
- 2D translating and rotating: configuration space is $\mathbf{C}=\mathbf{R}^{2} \times[0,2 \pi)$

configuration space

- Obstacle P. Its corresponding C-obstacle $\mathrm{P}^{\prime}=\{\vec{x} \in \mathbf{C} \mid \mathrm{R}(\vec{x}) \cap P \neq \emptyset\}$
- Free space: Placements (= subset of configuration space) where robot does not intersect any obstacle.

Translating a point robot

- Work space = configuration space
- Compute trapezoidal map of disjoint polygonal obstacles in $\mathrm{O}(n \log n)$ expected time (where $n=$ total \# edges), including point location data structure
- Construct road map in trapezoidal map:
- One vertex on each vertical edge
- One vertex in center of each trapezoid
- Edges between center-vertex and edge-vertex of same trapezoid
- O(n) time and space

Translating a point robot

- Work space = configuration space
- Compute trapezoidal map of disjoint polygonal obstacles in $\mathrm{O}(n \log n)$ expected time (where $n=$ total \# edges), including point location data structure
- Construct road map in trapezoidal map:
- One vertex on each vertical edge
- One vertex in center of each trapezoid
- Edges between center-vertex and edge-vertex of same trapezoid
- O(n) time and space
- Compute path:
- Locate trapezoids containing start and end
- Traverse this road map using DFS or BFS to find path from start to end

Theorem: One can preprocess a set of obstacles (with $n=$ total \# edges) in $\mathrm{O}(n \log n$) expected time, such that for any (start/end) query a collision-free path can be computed in $\mathrm{O}(n)$ time.

Minkowski sums

Extreme points

Configuration space with translations and rotations

work space

Shortest path for robot

Pull rubber band tight:

Visibility graph

