
1 Topological Properties (17 March)

The previous two lectures we defined and gave examples
of simplicial complexes. In this lecture, we will look at
two invariants of a topological space, specifically: the ori-
entation and the Euler characteristic.

Manifolds. A (geometric) n-manifold M ⊆ Rd (for
some d ≥ n) is a closed topological space that resem-
bles Euclidean space at each point. Specifically, that
means that each x ∈ M has a neighborhood Nx ⊂ M
that is homeomorphic to (read: resembles) an open n-ball
Bn := {x ⊂ Rn||x| < 1}. [Note: A closed space is a
space that contains all of its limit/accumulation points.]

Getting into the definition of homeomorphism is be-
yond the scope of this lecture, so we will define it via
examples, so that you have an intuition for what it is. Re-
calling tangent lines and planes from calculus class, we
remember that a tangent at a point is the line (or plane)
that looks close enough to the (smooth) surface/function
when you zoom in far enough. For this reason, the plane
Rd as well as the graph any smooth function over Rd:

Allowing for the tangent ball above to be a “topological
tangent” as opposed to a geometric one, we allow the tan-
gent to bend and change shape, as long as we do not take
scissors or glue to the ball. For example, the following
spaces are also manifolds:

When a space is punctured (a hole added interior to

a face), or has an (n − 1)-dimensional face with three
or more n-dimensional simplices adjacent to it, then this
space is not a manifold. For example, the following topo-
logical spaces are not manifolds:

Note: there is a special group of non-manifolds known
as manifolds with boundary. These occur if we have a
manifold and remove an open disc from it.

Orientation. When we say that a manifold is orientable,
that means there is a consistent way of defining up. For
example, the surface of the earth is orientable. At every
point on the earth, we can ask: in which direction is the
sky? And, all answers will be locally consistent. A möbius
band, however, is not orientable, as a point x can have two
different notions of up.

Formally, the orientation of a simplex is an ordering of
the vertices up to even permutations. The phrase up to
even permutations means that two permutations are con-
sidered equivalent if they differ by an even number of two-
element swaps.

For example, if we have a triangle t = {abc}, then
the permutations abc, bca, and cab all represent the same
orientation, and cba, acb, and bac all represent a differ-
ent orientation. Geometrically, this translates to using the
right hand rule to determine the orientation of a simplex.
Whether we obtain the orientation abc or cba depends on
whether we are looking at the front or the back of the sim-
plex. A simplex has exactly two orientations, and we often
refer to one as the positive (+1) orientation and the other
as the negative (−1) orientation.

In a simplicial complex, we say that two adjacent sim-
plices are consistently ordered if the common face is ori-
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ented in opposite directions in each simplex. For example,
the following triangles are consistently oriented:

We say that an n-dimensional simplicial complex is ori-
entable if all pairs of adjacent n-simplices are consistent.

This definition goes hand-in-hand with algorithm to test
if a simplex is orientable or not. Letting K be a k-
dimensional simplicial complex (of a manifold) with k+1
n-simplices. The algorithm to decide if K is orientable is
as follows:

1. Choose a simplex σ ∈ K.

2. Let τ1, . . . , τk be the DFS ordering of the n-faces
from σ.

3. Choose an arbitrary orientation for σ.

4. S = {σ}.
5. For each i = 1 . . . k: If τi has a unique consistent

orientation given the orientations of all simplices in
S, orient τi and set S = S ∪ {τi}. Else, return false.

6. For each edge: If the the incident triangles are not
consistently oriented, return false.

7. return true (as we have constructed a consistent ori-
entation).

[Exercise: This is done essentially with two sweeps: doing
the DFS and then going through the edges. In fact, we can
actually do this in one sweep. Do you see how?]

We consider the (orientable) cylinder and the (non-
orientable) Möbius strip. Below, we triangulate the fun-
damental polygons for each, and attempt to choose an ori-
entation for each triangle, starting with the starred triangle.

Euler Characteristic. Given a planar embedded
graph G with v vertices and e edges, let f be the
number of pieces the plane is cut into when we remove
(cut-along) G. The Euler characteristic of the graph is
then: χ(G) = v − e + f . We noticed that χ(G) = 2
always. This is actually a specific example of the Euler
characteristic of the sphere. A graph is planar if and only
if it can be embedded on the surface of a sphere. No
matter how you embed it on the sphere (or on the plane),
the number of faces the embedding creates will always be
the same.

Now consider a simplicial complex K. Let Ki be the
set of i-simplices in K. Then, the Euler characteristic of
K is defined as:

χ(K) :=

∞∑
i=0

(−1)i|Ki|.

If we use colloquial language, we see that the Euler char-
acteristic is equal to the number of vertices minus the num-
ber of edges plus the number of faces minus the number
of tetrahedra plus the number of 4-simplices, etc.

The Euler characteristic is a topological invariant. This
means, if we have the same underlying space, the Euler
characteristic will always be the same, no matter how we
triangulate it.

Manifold Classification.

CLASSIFICATION THEOREM. Given an orientable
compact manifold, the Euler characteristic is sufficient to
uniquely determine the topological type of the manifold:
the sphere S2, the torus T2, the double torus T2#T2, the
connected sum of three tori T2#T2#T2, etc.

The connected sum A#B is obtained by removing an
open disc from both A and B, then gluing them together
along the boundaries of the removed discs. This operation
is one type of surgery in topology.

In fact, all non-orientable two-manifolds can also be
classified by their Euler characteristic. A non-orientable
two-manifold is either a projective plane P2 or the con-
nected sum of projective planes P2# · · ·#P2.
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Handle-body Decomposition. Note: the handle-body
decomposition was not explicitly discussed in class, but
it might be helpful to understand for Question 4 of the
homework.

The torus T2 can be obtained by starting with a sphere,
removing two holes, and connecting the holes using a
cylinder. This cylinder we call a handle. We can repeat
this process to add n handles, we obtain the connected
sum of n tori.

Summary. Given two simplicial complexesK1 andK2,
it is often very difficult to determine if K1 = K2, or if
K1 is topologically equivalent to K2. Instead, we choose
a set or properties to describe K1 and K2. If these prop-
erties are topological invariants, then we can prove that
K1 6= K2 by finding a property that witnesses a difference
between them (for example, perhaps K1 is orientable and
K2 is not). More often than not, we do not even need to
fully understand exactly what the complex K1 represents,
we may just be interested in the properties themselves: de-
termining whether K1 is connected may be sufficient for
some applications.
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