
1 Simplicial Complexes (10 March)

Today’s lecture began with a power point slide highlight-
ing some applications of topology. The main point of these
examples is that, sometimes, geometry alone doesn’t tell
the whole story. Having a circle is really an unattainable
goal when working with data ... but, we can instead look
for properties of the data that are circle-like (e.g., does the
shape create an inside and an outside?).

Simplicial Complexes are one of the standard tools that
computational topologists use. This lecture will provide a
definition of simplicial complexes, as well as give several
examples so that we can get our hands dirty.

Graphs. We will start with something that you should
be very familiar with: graphs. Today, we formalized the
definition: A graph G is a vertex set V along with an edge
set E ⊂ V × V . We may write G = (V,E) without
explicitly saying that V is a vertex set and E is the edge
set.

For example, a social network (Facebook) graph can be
created by having a vertex for each person and an edge
connecting to vertices if the two corresponding people are
Facebook friends. What are the questions that we can ask
of such a graph?

1. For each friendship, how long has it existed?

2. Who are mutual friends of person A and person B?

3. Is there a central person in this network?

To answer these questions, we may need to add weights to
the edges (perhaps representing the strength of that friend-
ship) and make definitions. For example, one definition of
the central person could be the person p defined as follows:

p = argminp∈V max
q 6=p∈V

d(q, p),

where d(p, q) is the (weighted) distance between p and q
in the graph.

Mutual friendship brings up a concept called the clique,
which has two definitions:

clique: (real-life) an exclusive group of people sharing
a common interest
(graph-theory) a subset W ⊂ V such that W ×W ⊆
E

By convention, we will assume that W must be non-
empty to form a clique. So, every (non-empty) graph

has at least one clique, as every singleton set forms a
clique. Likewise, every edge represents a clique of the two
vertices that are its endpoints. The following graph has
five cliques of size three or more: {abc}, {bcd}, {abd},
{abcd}, and {efg}.

Affine Independence. Let V = {v0, . . . , vk} ⊂ Rd.
We say that the vertices in V are affinely independent if
the set {ui = vi − v0}i6=j are linearly independent. Here,
v0 is acting like the origin, and the vectors ui are basis
vectors. To be linearly independent means that no uj is
a linear combination of {ui}i6=j , i.e., there does not exist
uj 6= 0 and coefficients ci such that uj =

∑
i6=j ciui.

[[Exercise: show that the set {ui} are linearly indepen-
dent if and only if the set {wj = vj − un}j 6=n are linearly
independent for an arbitrary choice of n.]]

Simplices. We can define simplices in two ones: geo-
metrically and abstractly. A geometric k-simplex σ is the
convex hull of k + 1 affinely independent points in Eu-
clidean space; we write σ = CH(V ), where V is a set of
k + 1 affinely independent points in Rd.

Low-dimensional simplices are already familiar ob-
jects: zero-simplices are points (vertices), one-simplices
are edges, two-simplices are triangles, and three-simplices
are tetrahedron (or triangular pyramids). Notice that the

dimension k of a k-simplex refers to the dimension of
the interior of the simplex. Also note that three co-linear
points form a degenerate triangle, which is not a (geomet-
ric) simplex, as the three points are not affinely indepen-
dent.
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If σ is a simplex defined by the vertices in V and W ⊂
V and τ = CH(W ), we say that τ is a face or a sub-
simplex of σ, and we denote this relationship by τ < σ.
We say that τ is a proper face if τ 6= σ.

We can also define a simplex abstractly, without the
need of an embedding space. Given a set of abstract ver-
tices V = {v0, v1, . . . , vk}, an abstract k-simplex is a sub-
set of n + 1 distinct vertices in V . An k-simplex always
has a geometric realization in Rd for all d ≥ n.

Geometric Simplicial Complexes. A set of simplices
K is a (geometric) simplicial complex if it is closed under
the operation of taking intersections. What this means is
that K satisfies the following two properties:

1. If σ ∈ K and τ < σ, then τ ∈ K.

2. If σ0, σ1 ∈ K, then σ01 = σ0 ∩ σ1 is either empty or
in K.

The dimension of a simplicial complexK is the maximum
dimension of any simplex comprising K.

NOTE: A simplicial complex is a set, not a multi-set.
So, an simplex (such as an edge) either exists in the set
or does not exist. There cannot be two copies of the same
exact edge.

Abstract Simplicial Complex. An abstract simplicial
complex is a finite collection of sets A such that

1. If α ∈ A and β ⊆ α, then β ∈ A.

2. If α0, α1 ∈ A, then α01 = α0 ∩α1 is either empty or
in A.

The dimension of A is equal to the cardinaltiy of A (i.e.,
how many elements are in A). If β ⊂ α, then β is called a
face of α. Just as before, β is a proper face if β 6= α.

Examples. The following complexes are valid simpli-
cial complexes:

The following complexes are not valid simplicial com-
plexes:

[[Exercise: For each of the s.c. in the previous two
sets, why is the s.c. valid or invalid? We discussed this
in class.]]

Summary. During today’s class, we learned about the
building block of computational topology: simplicial
complexes. We used examples in order to better under-
stand the unfamiliar definitions. If you feel like you still
do not understand the definitions, try to draw some more
examples. Getting your hands dirty by constructing exam-
ples (and counter-examples) using these definitions is the
best way to learn them. While we did not discuss the ab-
stract simplicial complex in this lecture specifically, it is
included in these notes and will be the starting point for
the next lecture.
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