CMPS 3130/6130 Computational Geometry Spring 2015

Linear Programming and Halfplane Intersection Carola Wenk

Word Problem

A company produces tables and chairs. The profit for a chair is $\$ 2$, and for a table $\$ 4$. Machine group A needs 4 hours to produce a chair, and 6 hours to produce a table. Machine group B needs 2 hours to produce a chair, and 6 hours to produce a table. Per day there are at most 120 working hours for group A and at most 72 hours for group B.

How can the company maximize profit?

Variables:

$c_{A}=\#$ chairs produced on machine group A
$C_{B}=\#$ chairs produced on machine group B
$t_{A}=\#$ tables produced on machine group A
$t_{B}=\#$ tables produced on machine group B

Objective function (profit):

Maximize $2\left(c_{A}+c_{B}\right)+4\left(t_{A}+t_{B}\right)$

Linear Programming

Variables: x_{1}, \ldots, x_{d}

Constraints:

$h_{1}: \quad a_{11} x_{1}+\ldots+a_{1 d} x_{d} \leq b_{1}$
$h_{2}: \quad a_{21} x_{1}+\ldots+a_{2 d} x_{d} \leq b_{2}$
$h_{\mathrm{n}}: \quad a_{\mathrm{n} 1} x_{1}+\ldots+a_{\mathrm{n} d} x_{d} \leq b_{\mathrm{n}}$

Maximize $f_{\vec{c}}(\vec{x})=c_{1} x_{1}+\ldots+c_{d} x_{d}$

Linear program in d variables with
 n constraints

- Each constraint h_{i} is a half-space in R^{d}
- $\bigcap_{i=1}^{n} h_{i}$ is the feasible region of the linear program
- Maximizing $f_{\vec{c}}(\vec{x})$ corresponds to finding a point \vec{X} that is extreme in direction \vec{c}.

Sub-Problem: Halfspace Intersection (in $\mathbf{R}^{\mathbf{2}}$: Halfplane Intersection)

Given: A set $\mathrm{H}=\left\{h_{1}, h_{2}, \ldots, h_{n}\right\}$ of halfplanes

$$
h_{\mathrm{i}}: \quad a_{\mathrm{i}} x+b_{\mathrm{i}} y \leq c_{\mathrm{i}}
$$

with constants $a_{\mathrm{i}}, b_{\mathrm{i}}, c_{\mathrm{i}}$; for $i=1, \ldots, n$.
Find: $\bigcap_{i=1}^{n} h_{i}$, i.e., the feasible region of all points $(x, y) \in \mathrm{R}^{2}$ satisfying all n constraints at the same time. This is a convex polygonal region bounded by at most n edges.

intersection bounded

intersection unbounded

intersection empty

intersection degenerated to a point

D\&C Halfplane Intersection

```
Algorithm Intersect_Halfplanes \((H)\) :
Input: A set \(H\) of \(n\) halfplanes in \(\mathbf{R}^{2}\)
Output: The convex polygonal region \(\mathrm{C}=\bigcap_{h \in H} h\)
if \(|H|=1\) then
    \(\mathrm{C}=\mathrm{h}\), where \(H=\{h\}\)
else
    split \(H\) into two sets \(H_{1}\) and \(H_{2}\) of size \(n / 2\) each
    \(C_{1}=\) Intersect_Halfplanes \(\left(H_{1}\right)\)
    \(\mathrm{C}_{2}=\) Intersect_Halfplanes \(\left(\mathrm{H}_{2}\right)\)
    \(C=\operatorname{Intersect}\) Convex_Regions \(\left(C_{1}, C_{2}\right)\)
    return \(C\)
```

- Use a plane-sweep to develop an $\mathrm{O}(\mathrm{n})$-time algorithm for Intersect_Convex_Regions
- $\mathrm{T}(n)=2 \mathrm{~T}(n / 2)+n \quad \Rightarrow \mathrm{~T}(n) \in \mathrm{O}(n \log n)$

Incremental Linear Programming

- 2D linear program (LP)
- Assume the LP is bounded (otherwise add constraints)
- Assume there is one unique solution (if any); take the lexicographically smallest solution

- Incremental approach: Add one halfplane after the other.
$H_{i}=\left\{h_{1}, \ldots, h_{i}\right\}$
$C_{i}=h_{1} \cap \cdots \cap h_{i}$
$C=C_{n}=\bigcap_{h \in H} h$

Let $v_{i}=$ unique optimal vertex for feasible region C_{i}, for $i \geq 2$.
Then $C_{1} \supseteq C_{2} \supseteq \ldots \supseteq C_{n}=C$, and hence if $C_{i}=\emptyset$ for some i then $C_{j}=\emptyset$ for all $j \geq i$.

Incremental Linear Programming

Lemma: Let $2 \leq i \leq n$.
(i) If $v_{i-1} \in h_{i}$ then $v_{i}=v_{i-1}$
(ii) If $v_{i-1} \notin h_{i}$ then $C_{i}=\varnothing$
or $v_{i} \in l_{i}=$ the line bounding h_{i}

Handling case (ii) involves solving a 1-dimensional LP on l_{i} :

- The feasible region is just an interval, that can be computed in linear time [rightmost left-bounded halfplane, leftmost right-bounded halfplane]

- \Rightarrow We can compute a new v_{i}, or decide that the LP is infeasible, in O(i) time

2D_Bounded_LP

```
Algorithm 2D_Bounded_LP( \(H, \vec{c}\) ):
Input: A two-dimensional LP \((H, \vec{C})\)
Output: Report if \((H, \vec{C})\) is infeasible. Otherwise report the lexicographically smallest
    point that maximizes \(f_{\vec{c}}\).
Let \(h_{1}, \ldots, h_{n}\) be the halfplanes of \(H\)
Let \(v_{2}\) be the corner of \(C_{2}\), which exists because LP is bounded
for \(\mathrm{i}=3\) to n do
    if \(v_{i-1} \in h_{i}\) then \(v_{i}=v_{i-1}\)
    else // Case (ii)
        \(v_{i}=\) point on \(l_{i}\) that maximizes \(f_{\vec{c}}\) subject to constraints in \(H_{i-1}\)
    if such a point does not exist then
        Report that the LP is infeasible
        break;
return \(v_{n}\)
- Runtime: \(\sum_{i=1}^{n} O(i)=O\left(n^{2}\right)\) Storage: \(O(n)\)
```


Randomized Incremental LP

Depending on the insertion order of the halfplanes the runtime varies between $\mathrm{O}(n)$ and $\mathrm{O}\left(n^{2}\right)$.
\Rightarrow Randomize the input order of the halfplanes.

Theorem: 2D_Randomized_Bounded_LP runs in $\mathrm{O}(n)$ expected time and $\mathrm{O}(n)$ deterministic space.

Proof: Define a random variable $X_{i}=\left\{\begin{array}{l}1, v_{i-1} \notin h_{i} \\ 0, \text { else }\end{array}\right.$
The total time spent to resolve case (ii), over all h_{1}, \ldots, h_{n} is

$$
\sum_{i=1}^{n} O(i) X_{i}
$$

Randomized Incremental LP

We now need to bound the expected value
$\mathrm{E}\left(\sum_{i=1}^{n} O(i) X_{i}\right)=\sum_{i=1}^{n} O(i) E\left(X_{i}\right)$
and we know that $E\left(X_{i}\right)=P\left(X_{i}\right)=P\left(v_{i-1} \notin h_{i}\right)$.
Apply backwards analysis to bound $E\left(X_{i}\right)$:

- Fix $H_{i}=\left\{h_{1}, \ldots, h_{i}\right\}$ which determines C_{i}.
- Analyze what happened in last step when h_{i} was added.
- P(had to compute new optimal vertex when adding h_{i})
$=\mathrm{P}\left(\right.$ optimal vertex changes when we remove a halfplane from $\left.C_{i}\right)$ $\leq \frac{2}{i}$

$\Rightarrow E\left(X_{i}\right) \leq \frac{2}{i}$
\Rightarrow Total expected runtime is $\sum_{i=1}^{n} O(i) \frac{2}{i}=O(n)$

