CMPS 3130/6130: Computational Geometry Spring 2015

Convex Hulls

Carola Wenk

Convex Hull Problem

- Given a set of pins on a pinboard and a rubber band around them. How does the rubber band look when it snaps tight?
- The convex hull of a point set is one of the simplest shape
 approximations for a set of points.

Convexity

- A set $C \subseteq \mathbf{R}^{2}$ is convex if for every two points $p, q \in C$ the line segment $\overline{p q}$ is fully contained in C.

convex

non-convex

Convex Hull

The convex hull $C H(P)$ of a point set $P \subseteq \mathbf{R}^{2}$ is the smallest convex set $C \supseteq P$. In other words $\mathrm{CH}(\mathrm{P})=\bigcap_{C \supseteq P} \mathrm{C}$.

Convex Hull

- Observation: $\mathrm{CH}(\mathrm{P})$ is the unique convex polygon whose vertices are points of P and which contains all points of P .

Goal: Compute $\mathrm{CH}(\mathrm{P})$.
What does that mean? How do we represent/store $\mathrm{CH}(\mathrm{P})$?
\Rightarrow Represent the convex hull as the sequence of points on the convex hull polygon (the boundary of the convex hull), in counter-clockwise order.

A First Try

```
Algorithm SLOW_CH(P):
/* \(\mathrm{CH}(\mathrm{P})=\) Intersection of all half-planes that are defined by the directed line through
    ordered pairs of points in P and that have all remaining points of P on their left */
Input: Point set \(P \subseteq \mathbf{R}^{2}\)
Output: A list \(L\) of vertices describing the \(\mathrm{CH}(P)\) in counter-clockwise order
\(E:=\varnothing\)
for all \((p, q) \in P \times P\) with \(p \neq q\) // ordered pair
    valid := true
    for all \(r \in P, r \neq p\) and \(r \neq q\)
    if \(r\) lies to the right of directed line through \(p\) and \(q / /\) takes constant time
        valid := false
    if valid then
    \(E:=E \cup \overrightarrow{p q} / /\) directed edge
```

Construct from E sorted list L of vertices of $\mathrm{CH}(P)$ in counter-clockwise order

- Runtime: $\mathrm{O}\left(n^{3}\right)$, where $n=|P|$
- How to test that a point lies to the right of a directed line?

Orientation Test / Halfplane Test

- positive orientation (counter-clockwise)

- negative orientation (clockwise)

- zero orientation
- r lies on the line $\overrightarrow{\mathrm{pq}}$
- r lies to the left of $p q \bullet \vec{r}$ lies to the right of $\overrightarrow{p q}$
- $\operatorname{Orient}(p, q, r)=\operatorname{sign} \operatorname{det}\left(\begin{array}{lll}1 & p_{x} & p_{y} \\ 1 & q_{x} & q_{y} \\ 1 & r_{x} & r_{y}\end{array}\right)$, where $p=\left(p_{x}, p_{y}\right)$
- Can be computed in constant time

Jarvis’ March (Gift Wrapping)

- Runtime: $\mathrm{O}(h n)$, where $n=|P|$ and $h=\#$ points on $\mathrm{CH}(P)$
- Output-sensitive algorithm

Incremental Insertion

Input: Point set $P \subseteq \mathbf{R}^{2}$
Output: $\mathrm{C}=\mathrm{CH}(P)$, described as a list of vertices in counter-clockwise order

```
```

```
Algorithm Incremental_CH(P):
```

```
Algorithm Incremental_CH(P):
// Compute CH(P) by incrementally inserting points from left to right
// Compute CH(P) by incrementally inserting points from left to right
Algorithm Incremental_CH(P):
```

```
Input: Point set \(P \subseteq \mathbf{R}^{2}\)
Output: \(\mathrm{C}=\mathrm{CH}(P)\), described as a list of vertices in counter-clockwise order Sort points in \(P\) lexicographically (by \(x\)-coordinate, break ties by \(y\)-coordinate) Remove first three points from \(P\) and insert them into \(C\) in counter-clockwise order around the triangle described by them.
for all \(p \in P\) // Incrementally add p to hull
Compute the two tangents to \(p\) and \(C\)
Remove enclosed non-hull points from \(C\), and insert \(p\)
```

$\mathrm{O}(n \log n)$ $\mathrm{O}(1)$
n-3 times
O(i) $\mathrm{O}(\mathrm{i})$

- Runtime: $\mathrm{O}\left(\sum_{i=3}^{n} i\right)=\mathrm{O}\left(n^{2}\right)$, where $n=|P|$
- Really?

Tangent computation


```
upper_tangent(C,p}\mp@subsup{)}{i}{\prime})
// Compute upper tangent to }\mp@subsup{p}{i}{}\mathrm{ and C. Return tangent vertex }\mp@subsup{v}{t}{
v
while \operatorname{succ}(\mp@subsup{v}{t}{})\mathrm{ lies above line through }\mp@subsup{p}{i}{}\mathrm{ and }\mp@subsup{v}{t}{}
    v
return }\mp@subsup{v}{t}{
```

\Rightarrow Amortization: Every vertex that is checked during tangent computation is afterwards deleted from the current convex hull C

Incremental Insertion

```
Algorithm Incremental_CH(P):
// Compute \(\mathrm{CH}(\mathrm{P})\) by incrementally inserting points from left to right
```

Input: Point set $P \subseteq \mathbf{R}^{2}$
Output: $\mathrm{C}=\mathrm{CH}(P)$, described as a list of vertices in counter-clockwise order
$\mathrm{O}(n \log n)$ $\mathrm{O}(1)$
n-3 times
$\mathrm{O}(1)$ amort. O(1) amort. Sort points in P lexicographically (by x-coordinate, break ties by y-coordinate) Remove first three points from P and insert them into C in counter-clockwise order around the triangle described by them.
for all $p \in P$ // Incrementally add p to hull
Compute the two tangents to p and C Remove enclosed non-hull points from C, and insert p

- Runtime: $\mathrm{O}(n \log n+n)=\mathrm{O}(n \log n)$, where $n=|P|$

Convex Hull: Divide \& Conquer

- Preprocessing: sort the points by xcoordinate
- Divide the set of points into two sets \mathbf{A} and \mathbb{B} :
- A contains the left $\lfloor n / 2\rfloor$ points,
- B contains the right $\lceil\mathrm{n} / 2\rceil$ points
- Recursively compute the convex hull of A

Recursively compute the convex hull of B

- Merge the two convex hulls

Merging

- Find upper and lower tangent
- With those tangents the convex hull of $A \cup B$ can be computed from the convex hulls of A and the convex hull of B in $\mathrm{O}(n)$ linear time

A
B

Finding the lower tangent

$\mathrm{a}=$ rightmost point of A
 $b=$ leftmost point of B

while $\mathrm{T}=\mathrm{ab}$ not lower tangent to both convex hulls of A and B do $\{$
while T not lower tangent to convex hull of A do \{ $a=a-1$
\}
while T not lower tangent to
convex hull of B do \{

A
B

Convex Hull: Runtime

- Preprocessing: sort the points by xcoordinate
- Divide the set of points into two sets \mathbf{A} and \mathbb{B} :
$\mathrm{O}(n \log n)$ just once
$\mathrm{O}(1)$
- A contains the left $\lfloor n / 2\rfloor$ points,
- B contains the right $\lceil\mathrm{n} / 2\rceil$ points
- Recursively compute the convex hull of A
$T(n / 2)$

Recursively compute the convex hull of B

- Merge the two convex hulls
$T(n / 2)$
$\mathrm{O}(n)$

Convex Hull: Runtime

- Runtime Recurrence:

$$
\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{cn}
$$

- Solves to $\mathrm{T}(n)=\Theta(n \log n)$

Recurrence

(Just like merge sort recurrence)

1. Divide: Divide set of points in half.
2. Conquer: Recursively compute convex hulls of 2 halves.
3. Combine: Linear-time merge.
\# subproblems $\begin{aligned} & T(n)=2 T(n / 2)+O(n) \\ & \text { subproblem size } \begin{array}{l}\text { work dividing } \\ \text { and combining }\end{array} \\ & \text { and }\end{aligned}$

Recurrence (cont'd)

$$
T(n)=\left\{\begin{array}{l}
\Theta(1) \text { if } n=1 \\
2 T(n / 2)+\Theta(n) \text { if } n>1
\end{array}\right.
$$

- How do we solve $T(n)$? I.e., how do we find out if it is $\mathrm{O}(\mathrm{n})$ or $\mathrm{O}\left(\mathrm{n}^{2}\right)$ or \ldots ?

Recursion tree

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.

$$
T(n)
$$

Recursion tree

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.

The divide-and-conquer design paradigm

1. Divide the problem (instance) into subproblems.
a subproblems, each of size n / b
2. Conquer the subproblems by solving them recursively.
3. Combine subproblem solutions.

Runtime is $f(n)$

Master theorem

$$
T(n)=a T(n / b)+f(n),
$$

where $a \geq 1, b>1$, and f is asymptotically positive.

$$
\begin{aligned}
& \text { CASE 1: } f(n)=O\left(n^{\log _{b} a-\varepsilon}\right) \\
& \quad \Rightarrow T(n)=\Theta\left(n^{\log _{b} a}\right) . \\
& \text { CASE 2: } f(n)=\Theta\left(n^{\log _{b} a} \log ^{k} n\right) \\
& \quad \Rightarrow T(n)=\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right) . \\
& \text { CASE 3: } f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right) \text { and } a f(n / b) \leq c f(n) \\
& \quad \Rightarrow T(n)=\Theta(f(n)) .
\end{aligned}
$$

Convex hull: $a=2, b=2 \Rightarrow n^{\log _{b} a}=n$

$$
\Rightarrow \text { CASE } 2(k=0) \Rightarrow T(n)=\Theta(n \log n)
$$

Graham's Scan

Another incremental algorithm

- Compute solution by incrementally adding points
- Add points in which order?
- Sorted by x-coordinate
- But convex hulls are cyclically ordered
\rightarrow Split convex hull into upper and lower part

Graham's LCH

Algorithm Grahams_LCH (P) :
// Incrementally compute the lower convex hull of P
Input: Point set $P \subseteq \mathbf{R}^{2}$
Output: A list L of vertices describing $\operatorname{LCH}(P)$ in counter-clockwise order
$\mathrm{O}(\mathrm{n} \log \mathrm{n}) \quad$ Sort P in increasing order by x-coordinate $\rightarrow P=\left\{p_{1}, \ldots, p_{n}\right\}$
$L=\left\{p_{2}, p_{1}\right\}$
for $i=3$ to n
while $|L|>=2$ and orientation(L.second(), L.first(), p_{i}, $)<=0 / /$ no left turn delete first element from L
Append p_{i} to the front of L

- Each element is appended only once, and hence only deleted at most once \Rightarrow the for-loop takes $\mathrm{O}(n)$ time
- $\mathrm{O}(n \log n)$ time total

Lower Bound

- Comparison-based sorting of n elements takes $\Omega(n \log n)$ time.
- How can we use this lower bound to show a lower bound for the computation of the convex hull of n points in \mathbf{R}^{2} ?

Decision-tree model

A decision tree models the execution of any comparison sorting algorithm:

- One tree per input size n.
- The tree contains all possible comparisons (= if-branches) that could be executed for any input of size n.
- The tree contains all comparisons along all possible instruction traces (= control flows) for all inputs of size n.
- For one input, only one path to a leaf is executed.
- Running time $=$ length of the path taken.
- Worst-case running time $=$ height of tree.

Decision-tree for insertion sort

 Sort $\left\langle a_{1}, a_{2}, a_{3}\right\rangle$

Each internal node is labeled $a_{i}: a_{j}$ for $i, j \in\{1,2, \ldots, n\}$.

- The left subtree shows subsequent comparisons if $a_{i}<a_{j}$.
- The right subtree shows subsequent comparisons if $a_{i} \geq a_{j}$.

Decision-tree for insertion sort

 Sort $\left\langle a_{1}, a_{2}, a_{3}\right\rangle=\langle 9,4,6\rangle$

Each internal node is labeled $a_{i}: a_{j}$ for $i, j \in\{1,2, \ldots, n\}$.

- The left subtree shows subsequent comparisons if $a_{i}<a_{j}$.
- The right subtree shows subsequent comparisons if $a_{i} \geq a_{j}$.

Decision-tree for insertion sort

 Sort $\left.\left\langle a_{1}, a_{2}, a_{3}\right\rangle=<9,4,6\right\rangle$

Each internal node is labeled $a_{i}: a_{j}$ for $i, j \in\{1,2, \ldots, n\}$.

- The left subtree shows subsequent comparisons if $a_{i}<a_{j}$.
- The right subtree shows subsequent comparisons if $a_{i} \geq a_{j}$.

Decision-tree for insertion sort

 Sort $\left\langle a_{1}, a_{2}, a_{3}\right\rangle=\langle 9,4,6\rangle$

Each internal node is labeled $a_{i}: a_{j}$ for $i, j \in\{1,2, \ldots, n\}$.

- The left subtree shows subsequent comparisons if $a_{i}<a_{j}$.
- The right subtree shows subsequent comparisons if $a_{i} \geq a_{j}$.

Decision-tree for insertion sort

 Sort $\left\langle a_{1}, a_{2}, a_{3}\right\rangle=\langle 9,4,6>$

Each internal node is labeled $a_{i}: a_{j}$ for $i, j \in\{1,2, \ldots, n\}$.

- The left subtree shows subsequent comparisons if $a_{i}<a_{j}$.
- The right subtree shows subsequent comparisons if $a_{i} \geq a_{j}$.

Decision-tree for insertion sort

 Sort $\left\langle a_{1}, a_{2}, a_{3}\right\rangle=\langle 9,4,6>$

Each internal node is labeled $a_{i}: a_{j}$ for $i, j \in\{1,2, \ldots, n\}$.

- The left subtree shows subsequent comparisons if $a_{i}<a_{j}$.
- The right subtree shows subsequent comparisons if $a_{i} \geq a_{j}$.

Decision-tree for insertion sort

 Sort $\left\langle a_{1}, a_{2}, a_{3}\right\rangle=\langle 9,4,6>$

Each leaf contains a permutation $\langle\pi(1), \pi(2), \ldots, \pi(n)\rangle$ to indicate that the ordering $a_{\pi(1)} \leq a_{\pi(2)} \leq \ldots \leq a_{\pi(\mathrm{n})}$ has been established.

Lower bound for comparison sorting

Theorem. Any decision tree that can sort n elements must have height $\Omega(n \log n)$.

Proof. The tree must contain $\geq n$! leaves, since there are n ! possible permutations. A height- h binary tree has $\leq 2^{h}$ leaves. Thus, $n!\leq 2^{h}$.

$$
\begin{aligned}
\therefore h & \geq \log (n!) \\
& \geq \log \left((n / 2)^{n / 2}\right) \\
& =n / 2 \log n / 2 \\
& \Rightarrow h \in \Omega(n \log n) .
\end{aligned}
$$

(log is mono. increasing)
\square

Lower Bound

- Comparison-based sorting of n elements takes $\Omega(n \log n)$ time.
- How can we use this lower bound to show a lower bound for the computation of the convex hull of n points in \mathbf{R}^{2} ?
- Devise a sorting algorithm which uses the convex hull and otherwise only linear-time operations
\Rightarrow Since this is a comparison-based sorting algorithm, the lower bound $\Omega(n \log n)$ applies
\Rightarrow Since all other operations need linear time, the convex hull algorithm has to take $\Omega(n \log n)$ time

CH_Sort

```
Algorithm CH_Sort(S):
/* Sorts a set of numbers using a convex hull
    algorithm.
    Converts numbers to points, runs CH,
converts back to sorted sequence. */
Input: Set of numbers \(S \subseteq \mathbf{R}\)
Output: A list \(L\) of of numbers in \(S\) sorted in
    increasing order
\(P=\varnothing\)
for each \(s \in S\) insert \(\left(s, s^{2}\right)\) into \(P\)
\(L^{\prime}=\mathrm{CH}(P) / /\) compute convex hull
Find point \(p^{\prime} \in P\) with minimum x-coordinate
for each \(p=\left(p_{x}, p_{y}\right) \in L^{\prime}\), starting with \(p^{\prime}\),
    add \(p_{x}\) into \(L\)
return \(L\)
```


Convex Hull Summary

- Brute force algorithm:
- Jarvis' march (gift wrapping):
- Incremental insertion:
- Divide-and-conquer:
- Graham's scan:
- Lower bound:

$$
\begin{aligned}
& \mathrm{O}\left(n^{3}\right) \\
& \mathrm{O}(n h) \\
& \mathrm{O}(n \log n) \\
& \mathrm{O}(n \log n) \\
& \mathrm{O}(n \log n) \\
& \Omega(n \log n)
\end{aligned}
$$

