#### CMPS 3130/6130: Computational Geometry Spring 2015



# **Convex Hulls**

#### **Carola Wenk**

CMPS 3130/6130: Computational Geometry

# **Convex Hull Problem**

- Given a set of pins on a pinboard and a rubber band around them.
  - How does the rubber band look when it snaps tight?
- The convex hull of a point set is one of the simplest shape approximations for a set of points.



# Convexity

• A set  $C \subseteq \mathbb{R}^2$  is *convex* if for every two points  $p,q \in C$  the line segment  $\overline{pq}$  is fully contained in *C*.



CMPS 3130/6130: Computational Geometry

## **Convex Hull**

• The convex hull CH(P) of a point set  $P \subseteq \mathbb{R}^2$  is the smallest convex set  $C \supseteq P$ . In other words  $CH(P) = \bigcap_{C \supseteq P} C$ . *C* convex 1/13/15 CMPS 3130/6130: Computational Geometry

# **Convex Hull**

• **Observation:** CH(P) is the unique convex polygon whose vertices are points of P and which contains all points of P.

• Goal: Compute CH(P).

What does that mean? How do we represent/store CH(P)?

 $\Rightarrow$  Represent the convex hull as the sequence of points on the convex hull polygon (the boundary of the convex hull), in counter-clockwise order. 5



CMPS 3130/6130: Computational Geometry

# A First Try

#### Algorithm SLOW\_CH(*P*):

```
/* CH(P) = Intersection of all half-planes that are defined by the directed line through
ordered pairs of points in P and that have all remaining points of P on their left */
Input: Point set P ⊆ R<sup>2</sup>
Output: A list L of vertices describing the CH(P) in counter-clockwise order
E:=Ø
for all (p,q)∈P×P with p≠q // ordered pair
valid := true
for all r∈P, r≠p and r≠q
if r lies to the right of directed line through p and q // takes constant time
valid := false
if valid then
E:=E∪pq // directed edge
Construct from E sorted list L of vertices of CH(P) in counter-clockwise order
```

- Runtime:  $O(n^3)$ , where n = |P|
- How to test that a point lies to the right of a directed line?



# Jarvis' March (Gift Wrapping)





- Runtime: O(hn), where n = |P| and h = # points on CH(P)
- Output-sensitive algorithm

# **Incremental Insertion**

|               | Algorithm Incremental CH(P):                                                                                                            |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------|
|               | // Compute CH(P) by incrementally inserting points from left to right                                                                   |
|               | <b>Input:</b> Point set $P \subseteq \mathbb{R}^2$                                                                                      |
|               | <b>Output:</b> C=CH( <i>P</i> ), described as a list of vertices in counter-clockwise order                                             |
| $O(n \log n)$ | Sort points in <i>P</i> lexicographically (by <i>x</i> -coordinate, break ties by <i>y</i> -coordinate)                                 |
| O(1)          | Remove first three points from <i>P</i> and insert them into <i>C</i> in counter-clockwise order around the triangle described by them. |
| n-3 times     | for all $p \in P$ // Incrementally add p to hull                                                                                        |
| O(i)          | Compute the two tangents to $p$ and $C$                                                                                                 |
| O(i)          | Remove enclosed non-hull points from $C$ , and insert $p$                                                                               |

• Runtime:  $O(\sum_{i=3}^{n} i) = O(n^2)$ , where n = |P|

• Really?



# $\Rightarrow$ **Amortization:** Every vertex that is checked during tangent computation is afterwards deleted from the current convex hull *C*

# **Incremental Insertion**

|               | Algorithm Incremental_CH(P):                                                                                                            |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------|
|               | // Compute CH(P) by incrementally inserting points from left to right                                                                   |
|               | <b>Input:</b> Point set $P \subseteq \mathbb{R}^2$                                                                                      |
|               | <b>Output:</b> C=CH( <i>P</i> ), described as a list of vertices in counter-clockwise order                                             |
| $O(n \log n)$ | Sort points in <i>P</i> lexicographically (by x-coordinate, break ties by y-coordinate)                                                 |
| O(1)          | Remove first three points from <i>P</i> and insert them into <i>C</i> in counter-clockwise order around the triangle described by them. |
| n-3 times     | for all $p \in P$ // Incrementally add p to hull                                                                                        |
| O(1) amort.   | Compute the two tangents to <i>p</i> and <i>C</i>                                                                                       |
| O(1) amort.   | Remove enclosed non-hull points from $C$ , and insert $p$                                                                               |

• Runtime:  $O(n \log n + n) = O(n \log n)$ , where n = |P|

## **Convex Hull: Divide & Conquer**

- Preprocessing: sort the points by x-coordinate
- Divide the set of points into two sets A and B:
  - A contains the left  $\lfloor n/2 \rfloor$  points,
  - **B** contains the right  $\lceil n/2 \rceil$  points
- •Recursively compute the convex hull of **A**
- •Recursively compute the convex hull of **B**
- Merge the two convex hulls



# Merging

#### • Find upper and lower tangent

• With those tangents the convex hull of  $A \cup B$  can be computed from the convex hulls of A and the convex hull of B in O(n) linear time



# Finding the lower tangent



# **Convex Hull: Runtime**

- Preprocessing: sort the points by xcoordinate
- Divide the set of points into two sets A and B:
  - A contains the left  $\lfloor n/2 \rfloor$  points,
  - **B** contains the right  $\lceil n/2 \rceil$  points
- •Recursively compute the convex hull of **A**
- •Recursively compute the convex hull of **B**
- Merge the two convex hulls

1/13/15

 $O(n \log n)$  just once

**O**(1)

T(*n*/2)

T(*n*/2)

O(n)

# **Convex Hull: Runtime**

• Runtime Recurrence:

T(n) = 2 T(n/2) + cn

• Solves to  $T(n) = \Theta(n \log n)$ 

## Recurrence (Just like merge sort recurrence)

1. *Divide*: Divide set of points in half.

T(n) = 2T(n/2) +

- 2. *Conquer:* Recursively compute convex hulls of 2 halves.
- 3. Combine: Linear-time merge.

# subproblems subproblem size

work dividing and combining

O(n)

#### **Recurrence (cont'd)**

 $T(n) = \begin{cases} \Theta(1) & \text{if } n = 1; \\ 2T(n/2) + \Theta(n) & \text{if } n > 1. \end{cases}$ 

How do we solve *T(n)*? I.e., how do we find out if it is O(n) or O(n<sup>2</sup>) or ...?



















# The divide-and-conquer design paradigm

- **1.** *Divide* the problem (instance) into subproblems.
  - *a* subproblems, each of size *n/b*
- 2. *Conquer* the subproblems by solving them recursively.
- 3. Combine subproblem solutions. Runtime is f(n)

## **Master theorem**

T(n) = a T(n/b) + f(n) ,

where  $a \ge 1$ , b > 1, and f is asymptotically positive.

CASE 1: 
$$f(n) = O(n^{\log_b a} - \varepsilon)$$
  
 $\Rightarrow T(n) = \Theta(n^{\log_b a})$ .  
CASE 2:  $f(n) = \Theta(n^{\log_b a} \log^k n)$   
 $\Rightarrow T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$ .  
CASE 3:  $f(n) = \Omega(n^{\log_b a} + \varepsilon)$  and  $af(n/b) \le cf(n)$   
 $\Rightarrow T(n) = \Theta(f(n))$ .

Convex hull:  $a = 2, b = 2 \implies n^{\log_{b^a}} = n$  $\Rightarrow CASE 2 (k = 0) \implies T(n) = \Theta(n \log n)$ .

## Graham's Scan

#### **Another incremental algorithm**

- Compute solution by incrementally adding points
- Add points in which order?
  - Sorted by *x*-coordinate
  - But convex hulls are cyclically ordered
  - $\rightarrow$  Split convex hull into **upper** and **lower** part



# **Graham's LCH**

 $O(n \text{ log } n) \begin{cases} Algorithm Grahams_LCH(P): \\ // Incrementally compute the lower convex hull of P \\ Input: Point set <math>P \subseteq \mathbb{R}^2 \\ Output: A \text{ list } L \text{ of vertices describing LCH}(P) \text{ in counter-clockwise order} \\ Sort P \text{ in increasing order by } x\text{-coordinate} \rightarrow P = \{p_1, \dots, p_n\} \\ L = \{p_2, p_1\} \\ \text{for } i=3 \text{ to } n \\ \text{while } |L| \ge 2 \text{ and orientation}(L.\text{second}(), L.\text{first}(), p_i) \le 0 \text{ // no left turn} \\ \text{delete first element from L} \\ \text{Append } p_i \text{ to the front of } L \end{cases}$ 

• Each element is appended only once, and hence only deleted at most once  $\Rightarrow$  the for-loop takes O(n) time

• O(n log n) time total 1/13/15 CMPS 3130/6130: Computational Geometry

# Lower Bound

- Comparison-based sorting of *n* elements takes  $\Omega(n \log n)$  time.
- How can we use this lower bound to show a lower bound for the computation of the convex hull of n points in  $\mathbb{R}^2$ ?

# **Decision-tree model**



A decision tree models the execution of any comparison sorting algorithm:

- One tree per input size *n*.
- The tree contains **all** possible comparisons (= if-branches) that could be executed for **any** input of size *n*.
- The tree contains **all** comparisons along **all** possible instruction traces (= control flows) for **all** inputs of size *n*.
- For one input, only one path to a leaf is executed.
- Running time = length of the path taken.
- Worst-case running time = height of tree.



• The right subtree shows subsequent comparisons if  $a_i \ge a_i$ .

CMPS 3130/6130: C36 putational Geometry



• The right subtree shows subsequent comparisons if  $a_i \ge a_i$ .



• The right subtree shows subsequent comparisons if  $a_i \ge a_i$ .



- The left subtree shows subsequent comparisons if  $a_i < a_j$ .
- The right subtree shows subsequent comparisons if  $a_i \ge a_j$ .



- The left subtree shows subsequent comparisons if  $a_i < a_j$ .
- The right subtree shows subsequent comparisons if  $a_i \ge a_j$ .



CMPS 3130/6130: C4thputational Geometry



Each leaf contains a permutation  $\langle \pi(1), \pi(2), ..., \pi(n) \rangle$  to indicate that the ordering  $a_{\pi(1)} \leq a_{\pi(2)} \leq ... \leq a_{\pi(n)}$  has been established.

CMPS 3130/6130: C42nputational Geometry

# Lower bound for comparison sorting



**Theorem.** Any decision tree that can sort *n* elements must have height  $\Omega(n \log n)$ .

**Proof.** The tree must contain  $\geq n!$  leaves, since there are n! possible permutations. A height-h binary tree has  $\leq 2^h$  leaves. Thus,  $n! \leq 2^h$ .

 $\therefore h \ge \log(n!) \quad (\text{log is mono. increasing}) \\ \ge \log((n/2)^{n/2}) \\ = n/2 \log n/2 \\ \Rightarrow h \in \Omega(n \log n).$ 

# **Lower Bound**

- Comparison-based sorting of *n* elements takes  $\Omega(n \log n)$  time.
- How can we use this lower bound to show a lower bound for the computation of the convex hull of n points in  $\mathbb{R}^2$ ?
- Devise a sorting algorithm which uses the convex hull and otherwise only linear-time operations
  - $\Rightarrow$  Since this is a comparison-based sorting algorithm, the lower bound  $\Omega(n \log n)$  applies
  - $\Rightarrow$  Since all other operations need linear time, the convex hull algorithm has to take  $\Omega(n \log n)$  time

# CH\_Sort

#### Algorithm CH\_Sort(S): /\* Sorts a set of numbers using a convex hull algorithm. Converts numbers to points, runs CH, converts back to sorted sequence. \*/ Input: Set of numbers $S \subseteq \mathbb{R}$ Output: A list *L* of of numbers in *S* sorted in increasing order $P=\emptyset$ for each $s \in S$ insert $(s,s^2)$ into *P* L' = CH(P) // compute convex hull Find point $p' \in P$ with minimum x-coordinate for each $p=(p_x,p_y)\in L'$ , starting with p', add $p_x$ into *L* return *L*



# **Convex Hull Summary**

 $O(n^3)$ Brute force algorithm: • Jarvis' march (gift wrapping): O(nh)ulletIncremental insertion:  $O(n \log n)$ ulletDivide-and-conquer:  $O(n \log n)$ ۲ Graham's scan:  $O(n \log n)$ Lower bound:  $\Omega(n \log n)$ •