CMPS 3130/6130 Computational Geometry
Spring 2015

Voronol Diagrams
Carola Wenk

Based on:
= Computational Geometry: Algorithms and Applications

2/19/15 CMPS 3130/6130 Computational Geometry

Voronol Diagram

(Dirichlet Tesselation)

« Given: A set of point sites P = {py, ..., pn} S R*
« Task: Partition R? into Voronoi cells
V(p:) ={q € R?| d(p;, q) < d(p),q) forall j # i}

2/19/15 CMPS 3130/6130 Computational Geometry

Applications of Voronol Diagrams

e Nearest neighbor queries:
e Sites are post offices, restaurants, gas stations
e For a given query point, locate the nearest point site in O (logn) time
— point location

e Closest pair computation (collision detection):
e Naive O(n?) algorithm; sweep line algorithm in O(nlogn) time
e Each site and the closest site to it share a Voronoi edge
— Check all Voronoi edges (in O(n) time)

e Facility location: Build a new gas station (site) where it has minimal
interference with other gas stations

e Find largest empty disk and locate new gas station at center

e If center is restricted to lie within CH (P) then the center has to be on a
Voronoi edge

2/19/15 CMPS 3130/6130 Computational Geometry 3

Bisectors

e Voronoi edges are portions of bisectors
e For two points p, g, the bisector b(p, q) is defined as

b(p,q) ={r €R? | d(p,7) = d(q,1)}

e Voronoi vertex:

o(

2/19/15 CMPS 3130/6130 Computational Geometry

Voronoi cell

e Each Voronoi cell V(p;) is convex and
V(pl) — nijP h(pi' p]) >
JES

where h(p;, p;) is the halfspace defined by bisector b(p;, p;) that
contains p;

.pj

bi

h(pi,pj)

— A Voronoi cell has at most n — 1 sides

2/19/15 CMPS 3130/6130 Computational

Voronol Diagram

e ForP ={py,..,py} S R?, let the Voronoi diagram VD (P) be the
plan{ar subd1}v1510n induced by all Voronoi cells VD (p;) for all
1 €1 n

— The Voronoi diagram is a planar embedded graph with vertices,
edges (possibly infinite), and faces (possibly infinite)

e Theorem: Let P = {pq, ..., p,} S R?. Let n,, be the number of vertices
in VD (P) and let n, be the number of edges in VD (P). Then
n, < 2n—>5, and
Ne <3n—6 Add vertex at
infinity

Proof idea: Use Euler’s formulan —n, +n, + 1 = 2 and
= Dvev deg(v) = 3(n,, + 1).

2/19/15 CMPS 3130/6130 Computational Geometry 6

Properties

1. A Voronoi cell V(p;)is unbounded iff p; is on the convex hull of the
sites.

2. v isa Voronoi vertex iff it is the center of an empty circle that passes
through three sites.

Site with

bounded
Voronoi cell

Site with
unbounded /

Voronoi cell

Smaller empty
disk centered
on Voronoi
edge

Larger empty disk
centered on
Voronoi vertex

2/19/15 CMPS 3130/6130 Computational Geometry 7

Fortune’s sweep to construct the VD

Problem: We cannot maintain the intersection of the VD with sweepline ¢
since the VD above € depends on the sites below C.

X
Sweep line status: “Beach line” ¥ L " btk i
. . . . / ¥ ¢ g Lilgé
e Identify points gef" for which we know their W
closest site. < DINN/7
e Ifthere is asite p;el’ s.t. dist(q,p;)<dist(q, ¢) """"&: i ;Y e’-}
then the site closest to (lies above . % e / /
e Define the “beach line” as the boundary of the ¥
set of points " that are closer to a site above :
{than to C.

— The beach line is a sequence of parabolic arcs

— The breakpoints (beach line vertices) lie on edges of the VD,
such that they trace out the VD as the sweep line moves.

2/19/15 CMPS 3130/6130 Computational Geometry 8

Parabola

Set of points (X,y) such that dist((x,y), p) = dist(€) for a fixed site p = (p,.p,)

\..}’/ px-x) + (fy "’)') =Ly 'l'b)
px —Z&xu‘i-fg, 2&7*7" J -ZUG-M&
>x B -2pxx 43t 4 py - 4

L 2ley-y)

Rep-
T -

2/19/15 CMPS 3130/6130 Computational Geometry 9

Site Events

Site event: The sweep line ¢ reaches a new site

— A new arc appears on the beach line...

" o i ‘ | N £

W?ﬁk m!: A p—
shmu." hey are
eay

... which traces out a new VD edge

News Qdac. of e VD
Slerls 4o Le doceed ot

2/19/15 CMPS 3130/6130 Computational Geometry

10

Site Events

Lemma: The only way in which a new arc can appear on the beach line 1s
through a site event.

Proof:

« Case 1: Assume the existing parabola / (defined by site p;) breaks

through /3 ;
j I

A (2 P <
- SN fja-‘l Pix X tX -Fﬂr‘ly)
Formula for parabola /3 : 1 2(p;5y-2y)

Using p; ~¢, and p;~¢, one can show that is impossible that /5 and /j have
only one¢ intersection point. Contradiction.

2/19/15 CMPS 3130/6130 Computational Geometry 11

Site Events

« Case 2: Assume /j appears on the break point g between £ and

Pj

Pi q

¢ y — - ¥

£

But for an infinitesimally small motion of ¢, either p; or p, penetrates the
interior of C. Therefore f cannot appear on €. 7

2/19/15 CMPS 3130/6130 Computational Geometry 12

Circle Events

Circle event: Arc o shrinks to a point (|, and then arc o disappears

/
/

Pj / p / ' o
N * / \ -+ & \ e
5 7 £ e Pipr\ /NP Pi \ / Pk
Pre~.% o . B 5 & I A = N, # 9
JO__"\/ \".\ -~ _\ /_, R o \\ d
o o l %——/ g Ib(/ e
3 <" ~~4---
\/ v 8 A ——/_/
- _ ¢ o o¢
v v 4
o' shoreaie +o1 P et e
&ngnd

— There is a circle C that passes through p;, p; p, and touches € (from above).

—> There 1s no site in the interior of C. (Otherwise this site would be closer to
g than g is to ¢, and g would not be on the beach line.)

—> (1s a Voronol vertex (two edges of the VD meet in Q).

= Note: The only way an arc can disappear from the beach line 1s through a
circle event.

2/19/15 CMPS 3130/6130 Computational Geometry 13

e b PP

Data Structures

_/ \PiPj : \Pk-PI
 Store the VD under construction in a DCEL /\
 Sweep line status (sweep line): o

 Use a balanced binary search tree 7, in which the Pl p] m] [m]
leaves correspond to the arcs on the beach line.

e FEach leaf stores the site defining the arc (it only ° o
stores the site and note the arc) pig '8 i WP

* Each internal node corresponds to a break point \/"\:/\/

on the beach line 1’
¥ & ° i v
e Event queue:
e Priority queue Q (ordered by y-coordinate)
e Store each point site as a site event.
e Circle event:
e Store the lowest point of a circle as an event point
* Store a point to the leaf/arc in the tree that will disappear

2/19/15 CMPS 3130/6130 Computational Geometry 14

How to Detect Circle Events?

Make sure that for any three consecutive arcs on the beach line the
potential circle event they define 1s stored in the queue.

— Consecutive triples with breakpoints that do not converge do not yield a
circle event.

—> Note that a triple could disappear (e.g., due to the appearance of a new
site) before the event takes place. This yields a false alarm.

2/19/15 CMPS 3130/6130 Computational Geometry 15

Sweep Code

Algorithm VORONOIDIAGRAM(P)
Input. A set P:={py,...,pn} of point sites in the plane.
Output. The Voronoi diagram Vor(P) given inside a bounding box in a doubly-

| 8

2 Sl s

2/19/15

connected edge list D.

Initialize the event queue Q with all site events, initialize an empty status
structure J and an empty doubly-connected edge list D.
while Q is not empty
do Remove the event with largest y-coordinate from Q.
if the event is a site event, occurring at site p;
then HANDLESITEEVENT(p;)
else HANDLECIRCLEEVENT(Y), where ¥ is the leaf of T repre-
senting the arc that will disappear

The internal nodes still present in J correspond to the half-infinite edges of
the Voronoi diagram. Compute a bounding box that contains all vertices of
the Voronoi diagram in its interior, and attach the half-infinite edges to the
bounding box by updating the doubly-connected edge list appropriately.

Traverse the half-edges of the doubly-connected edge list to add the cell
records and the pointers to and from them.

CMPS 3130/6130 Computational Geometry

16

Sweep Code

* Degeneracies:
e [ftwo points have the same y-coordinate, handle them 1n any order.

e If there are more than three sites on one circle, there are several
coincident circle events that can be handled 1n any order. The
algorithm produces several degree-3 vertices at the same location.

e Theorem: Fortune’s sweep runs in O(n log n) time and O(N) space.

2/19/15 CMPS 3130/6130 Computational Geometry 17

Handling a Site Event

HANDLESITEEVENT(p;)

i

2.

If T is empty, insert p; into it (so that J consists of a single leaf storing p;)
and return. Otherwise, continue with steps 2— 5.

Search in T for the arc o vertically above p;. If the leaf representing o has
a pointer to a circle event in Q, then this circle event is a false alarm and it
must be deleted from Q.

Replace the leaf of T that represents o with a subtree having three leaves.

The middle leaf stores the new site p; and the other two leaves store the site
p; that was originally stored with «. Store the tuples (p;, p;) and {p;, p;)
representing the new breakpoints at the two new internal nodes. Perform
rebalancing operations on 7 if necessary.

Create new half-edge records in the Voronoi diagram structure for the
edge separating V(p;) and V(p;), which will be traced out by the two new
breakpoints.

Check the triple of consecutive arcs where the new arc for p; is the left arc
to see if the breakpoints converge. If so, insert the circle event into Q and
add pointers between the node in J and the node in Q. Do the same for the
triple where the new arc is the right arc.

Runs in O(log n) time per event, and there are n events.

2/19/15

CMPS 3130/6130 Computational Geometry

18

Handling a Circle Event

HANDLECIRCLEEVENT(Y)

1. Delete the leaf y that represents the disappearing arc « from J. Update
the tuples representing the breakpoints at the internal nodes. Perform
rebalancing operations on 7 if necessary. Delete all circle events involving
o from Q; these can be found using the pointers from the predecessor and
the successor of yin J. (The circle event where ¢« is the middle arc is
currently being handled, and has already been deleted from Q.)

2. Add the center of the circle causing the event as a vertex record to the
doubly-connected edge list D storing the Voronoi diagram under construc-
tion. Create two half-edge records corresponding to the new breakpoint
of the beach line. Set the pointers between them appropriately. Attach the
three new records to the half-edge records that end at the vertex.

3. Check the new triple of consecutive arcs that has the former left neighbor
of & as its middle arc to see if the two breakpoints of the triple converge.
If so, insert the corresponding circle event into Q. and set pointers between
the new circle event in Q and the corresponding leaf of J. Do the same for
the triple where the former right neighbor is the middle arc.

Runs in O(log n) time per event, and there are O(n) events because each event
defines a Voronoi vertex. False alarms are deleted before they are processed.

2/19/15 CMPS 3130/6130 Computational Geometry 19

