# CMPS 3130/6130 Computational Geometry Spring 2015 



# Delaunay Triangulations II <br> Carola Wenk 

Based on:
Computational Geometry: Algorithms and Applications

## Applications of DT

- Terrain modeling:
- Model a scanned terrain surface by interpolating the height using a piecewise linear function over $\mathrm{R}^{2}$.

- Angle-optimal triangulations give better approximations / interpolations since they avoid skinny triangles



## Applications of DT

- All nearest neighbors: Find for each $p \in P$ its nearest neighbor $q \in P ; q \neq p$.
- Empty circle property: $p, q \in P$ are connected by an edge in $\mathrm{DT}(P)$ $\Leftrightarrow$ there exists an empty circle passing through $p$ and $p$. Proof: " $\Rightarrow$ ": For the Delaunay edge $p q$ there must be a Voronoi edge. Center a circle through $p$ and $q$ at any point on the Voronoi edge, this circle must be empty.
" $\Leftarrow$ ": If there is an empty circle through $p$ and $q$, then its center $c$ has to lie on the Voronoi edge because it is equidistant to $p$ and $q$ and there is no site closer to $c$.
- Claim: Every $p \in P$ is adjacent in $\mathrm{DT}(P)$ to its nearest neighbor $q \in P$. Proof: The circle centered at $p$ with $q$ on its boundary has to be empty, so the circle with diameter $p q$ is empty and $p q$ is a Delaunay edge.

- Algorithm: Find all nearest neighbors in $\mathrm{O}(n)$ time: Check for each $p \in P$ all points connected to $p$ with a Delaunay edge.
- Minimum spanning tree: The edges of every Euclidean minimum spanning tree of $P$ are a subset of the edges of DT( $P$ ).


## Randomized Incremental Construction of DT(P)

- Start with a large triangle containing $P$.
- Insert points of $P$ incrementally:
- Find the containing triangle
- Add new edges

- Flip all illegal edges until every edge is legal.



## Randomized Incremental Construction of DT(P) <br> 

- An edge can become illegal only if one of its incident triangles changes.
- Check only edges of new triangles.
- Every new edge created is incident to $p_{r}$.
- Every old edge is legal (if $p_{r}$ is on on one of the incident triangles, the edge would have been flipped if it were illegal).
- Every new edge is legal (since it has been created from flipping a legal edge).


## Pseudo Code

Algorithm DelaunayTriangulation $(P)$
Input. A set $P$ of $n+1$ points in the plane.
Output. A Delaunay triangulation of $P$.

1. Let $p_{0}$ be the lexicographically highest point of $P$, that is, the rightmost among the points with largest $y$-coordinate.
2. Let $p_{-1}$ and $p_{-2}$ be two points in $\mathbb{R}^{2}$ sufficiently far away and such that $P$ is contained in the triangle $p_{0} p_{-1} p_{-2}$.
Initialize $\mathcal{T}$ as the triangulation consisting of the single triangle $p_{0} p_{-1} p_{-2}$.
Compute a random permutation $p_{1}, p_{2}, \ldots, p_{n}$ of $P \backslash\left\{p_{0}\right\}$.
for $r \leftarrow 1$ to $n$
do (* Insert $p_{r}$ into $\left.\mathfrak{T}: ~ *\right)$
Find a triangle $p_{i} p_{j} p_{k} \in \mathcal{T}$ containing $p_{r}$.
if $p_{r}$ lies in the interior of the triangle $p_{i} p_{j} p_{k}$
then Add edges from $p_{r}$ to the three vertices of $p_{i} p_{j} p_{k}$, thereby splitting $p_{i} p_{j} p_{k}$ into three triangles.
LEGALIZEEdGE $\left(p_{r}, \overline{p_{i} p_{j}}, \mathcal{T}\right)$
LEGALIZEEDGE $\left(p_{r}, \overline{p_{j} p_{k}}, \mathcal{T}\right)$
LegalizeEdge $\left(p_{r}, \overline{p_{k} p_{i}}, \mathcal{T}\right)$
else ( $* p_{r}$ lies on an edge of $p_{i} p_{j} p_{k}$, say the edge $\left.\overline{p_{i} p_{j}} *\right)$
Add edges from $p_{r}$ to $p_{k}$ and to the third vertex $p_{l}$ of the other triangle that is incident to $\overline{p_{i} p_{j}}$, thereby splitting the two triangles incident to $\overline{p_{i} p_{j}}$ into four triangles.
$\operatorname{LEGALIzEEdGE}\left(p_{r}, \overline{p_{i} p_{l}}, \mathcal{T}\right)$
$\operatorname{LEGALIzEEDGE}\left(p_{r}, \overline{p_{l} p_{j}}, \mathcal{T}\right)$
LegalizeEdge $\left(p_{r}, \overline{p_{j} p_{k}}, \mathcal{T}\right)$
LegalizeEdge $\left(p_{r}, \overline{p_{k} p_{i}}, \mathcal{T}\right)$
Discard $p_{-1}$ and $p_{-2}$ with all their incident edges from $\mathcal{T}$.
return $\mathcal{T}$

LegalizeEdge $\left(p_{r}, \overline{p_{i} p_{j}}, \mathcal{T}\right)$

1. (* The point being inserted is $p_{r}$, and $\overline{p_{i} p_{j}}$ is the edge of $\mathcal{T}$ that may need to be flipped. *)

## if $\overline{p_{i} p_{j}}$ is illegal

then Let $p_{i} p_{j} p_{k}$ be the triangle adjacent to $p_{r} p_{i} p_{j}$ along $\overline{p_{i} p_{j}}$.
(* Flip $\left.\overline{p_{i} p_{j}}: *\right)$ Replace $\overline{p_{i} p_{j}}$ with $\overline{p_{r} p_{k}}$.
LEGALIZEEDGE $\left(p_{r}, \overline{p_{i} p_{k}}, \mathcal{T}\right)$
LegalizeEdge $\left(p_{r}, \overline{p_{k} p_{j}}, \mathcal{T}\right)$

## History

The algorithm stores the history of the constructed triangles. This allows to easily locate the triangle containing a new point by following pointers.

- Division of a triangle:


Store pointers from the old triangle to the three new triangles.

- Flip:


Store pointers from both old triangles to both new triangles.

## DT and 3D CH

Theorem: Let $P=\left\{p_{1}, \ldots, p_{n}\right\}$ with $p_{\mathrm{i}}=\left(a_{\mathrm{i}}, b_{\mathrm{i}}, 0\right)$. Let $p_{\mathrm{i}}^{*}=\left(a_{\mathrm{i}}, b_{\mathrm{i}}, a^{2}{ }_{\mathrm{i}}+b^{2}{ }_{\mathrm{i}}\right)$ be the vertical projection of each point $p_{i}$ onto the paraboloid $z=x^{2}+y^{2}$. Then DT(P) is the orthogonal projection onto the plane $z=0$ of the lower convex hull of $P^{*}=\left\{p^{*}{ }_{1}, \ldots, p^{*}{ }_{n}\right\}$.


Pictures generated with Hull2VD tool available at http://www.cs.mtu.edu/~shene/NSF-2/DM2-BETA

## DT and 3D CH

Theorem: Let $P=\left\{p_{1}, \ldots, p_{n}\right\}$ with $p_{\mathrm{i}}=\left(a_{\mathrm{i}}, b_{\mathrm{i}}, 0\right)$. Let $p_{\mathrm{i}}^{*}=\left(a_{\mathrm{i}}, b_{\mathrm{i}}, a^{2}{ }_{\mathrm{i}}+b^{2}{ }_{\mathrm{i}}\right)$ be the vertical projection of each point $p_{i}$ onto the paraboloid $z=x^{2}+y^{2}$. Then DT(P) is the orthogonal projection onto the plane $z=0$ of the lower convex hull of $P^{*}=\left\{p^{*}{ }_{1}, \ldots, p^{*}{ }_{n}\right\}$.


Pictures generated with Hull2VD tool available at http://www.cs.mtu.edu/~shene/NSF-2/DM2-BETA

## DT and 3D CH

Theorem: Let $P=\left\{p_{1}, \ldots, p_{n}\right\}$ with $p_{\mathrm{i}}=\left(a_{\mathrm{i}}, b_{\mathrm{i}}, 0\right)$. Let $p_{\mathrm{i}}^{*}=\left(a_{\mathrm{i}}, b_{\mathrm{i}}, a^{2}{ }_{\mathrm{i}}+b_{\mathrm{i}}^{2}\right)$ be the vertical projection of each point $p_{i}$ onto the paraboloid $z=x^{2}+y^{2}$. Then DT(P) is the orthogonal projection onto the plane $z=0$ of the lower convex hull of $P^{*}=\left\{p^{*}{ }_{1}, \ldots, p^{*}{ }_{n}\right\}$.


Pictures generated with Hull2VD tool available at http://www.cs.mtu.edu/~shene/NSF-2/DM2-BETA

## DT and 3D CH

Theorem: Let $P=\left\{p_{1}, \ldots, p_{n}\right\}$ with $p_{\mathrm{i}}=\left(a_{\mathrm{i}}, b_{\mathrm{i}}, 0\right)$. Let $p_{\mathrm{i}}^{*}=\left(a_{\mathrm{i}}, b_{\mathrm{i}}, a^{2}{ }_{\mathrm{i}}+b_{\mathrm{i}}^{2}\right)$ be the vertical projection of each point $p_{i}$ onto the paraboloid $z=x^{2}+y^{2}$. Then DT(P) is the orthogonal projection onto the plane $z=0$ of the lower convex hull of $P^{*}=\left\{p^{*}{ }_{1}, \ldots, p^{*}{ }_{n}\right\}$.
$p^{*}{ }_{\mathrm{i},} p^{*}{ }_{\mathrm{j},} p^{*}{ }_{\mathrm{k}}$ form a (triangular) face of $\mathrm{LCH}\left(P^{*}\right)$

The plane through $p^{*}, p_{i}^{*}, p^{*}{ }_{k}$ leaves all remaining points of $P$
prop unit above it paraboloid

The circle through $p_{i}, p_{\mathrm{j}}, p_{\mathrm{k}}$ leaves all remaining points of $P$ in its exterior
$\qquad$
$p_{\mathrm{i},}, p_{\mathrm{j}}, p_{\mathrm{k}}$ form a triangle of $\mathrm{DT}(P)$


Slide adapted from slides by Vera Sacristan.

