CMPS 3130/6130 Computational Geometry Spring 2015

Delaunay Triangulations I Carola Wenk

Computational Geometry: Algorithms and Applications

Triangulation

- Let $P=\left\{p_{1}, \ldots, p_{n}\right\} \subseteq R^{2}$ be a finite set of points in the plane.
- A triangulation of \boldsymbol{P} is a simple, plane (i.e., planar embedded), connected graph $T=(P, E)$ such that
- every edge in E is a line segment,
- the outer face is bounded by edges of $\mathrm{CH}(P)$,
- all inner faces are triangles.

Dual Graph

- Let $G=(V, E)$ be a plane graph. The dual graph G^{*} has
- a vertex for every face of G,
- an edge for every edge of G, between the two faces incident to the original edge

Delaunay Triangulation

- Let G be the plane graph for the Voronoi diagram $\operatorname{VD}(P)$. Then the dual graph G^{*} is called the Delaunay Triangulation DT(P).

Canonical straight-line embedding for $\mathrm{DT}(\mathrm{P})$:

- If P is in general position (no three points on a line, no four points on a circle) then every inner face of $\mathrm{DT}(P)$ is indeed a triangle.
- $\mathrm{DT}(P)$ can be stored as an abstract graph, without geometric information. (No such obvious storing scheme for $\operatorname{VD}(P)$.)

Straight-Line Embedding

- Lemma: $\mathrm{DT}(P)$ is a plane graph, i.e., the straight-line edges do not intersect.
- Proof:
- $\overline{p p}$, is an edge of $\mathrm{DT}(P) \Leftrightarrow$ There is an empty closed disk D_{p} with p and p ' on its boundary, and its center c on the bisector.
- Let qq^{\prime} be another Delaunay edge that intersects $p p^{\prime}$
$\Rightarrow q$ and q^{\prime} lie outside of D_{p}, therefore $\overline{q q}$ also intersects $\overline{p c}$ or $\overrightarrow{p^{\prime} c}$
- Similarly, $\overline{p p}$, also intersects $\overline{q c}$, or $\overline{q^{\prime}}{ }^{\prime}$,
$\Rightarrow\left(\overline{p c}\right.$ or $\left.\overline{p^{\prime} c^{\prime}}\right)$ and ($\overline{q c^{\prime}}$ or $\left.\overline{q^{\prime} c^{\prime}}\right)$ intersect

\Rightarrow The edges are not in different Voronoi cells
\Rightarrow Contradiction

Characterization I of DT(P)

- Lemma: Let $p, q, r \in P$ let Δ be the triangle they define. Then the following statements are equivalent:
a) Δ belongs to $\mathrm{DT}(P)$
b) The circumcenter of Δ is a vertex in $\operatorname{VD}(P)$
c) The circumcircle of Δ is empty (i.e., contains no other point of P)
- Characterization I: Let T be a triangulation of P.

Then $T=\mathrm{DT}(P) \Leftrightarrow$ The circumcircle of any triangle in T is empty.

Illegal Edges

- Definition: Let $p_{\mathrm{j}}, p_{\mathrm{j}}, p_{k}, p_{p} \in P$.

Then $\overline{p_{i} p_{j}}$ is an illegal edge $\Leftrightarrow p_{l}$ lies in the interior of the circle through p_{i}, p_{j}, p_{k}.

- Lemma: Let $p_{i}, p_{j}, p_{k}, p_{l} \in P$.

Then $p_{i} p_{j}$ is illegal $\Leftrightarrow \min _{1 \leq i \leq 6} \alpha_{i}<\min _{1 \leq i \leq 6} \alpha_{i}^{\prime}$

- Theorem (Thales): Let a, b, p, q be four points on a circle, and let r be inside and let s be outside of the circle, such that p, q, r, s lie on the same side of the line through a, b.
Then $\angle a, s, b<\angle a, q, b=\angle a, p, b<\angle a, r, b$

Characterization II of DT(P)

- Definition: A triangulation is called legal if it does not contain any illegal edges.
- Characterization II: Let T be a triangulation of P. Then $T=\mathrm{DT}(P) \Leftrightarrow T$ is legal.
- Algorithm Legal_Triangulation(T):

Input: A triangulation T of a point set P
Output: A legal triangulation of P
while T contains an illegal edge $\overline{p_{i} p_{j}}$ do
//Flip $\overline{p_{i} p_{j}}$
Let $p_{i}, p_{j}, p_{k}, p_{l}$ be the quadrilateral containing $\overline{p_{i} p_{j}}$
Remove $\overline{p_{i} p_{j}}$ and add $\overline{p_{k} p_{l}}$
return T

Runtime analysis:

- In every iteration of the loop the angle vector of T (all angles in T sorted by increasing value) increases
- With this one can show that a flipped edge never appears again
- There are $\mathrm{O}\left(n^{2}\right)$ edges, therefore the runtime is $\mathrm{O}\left(n^{2}\right)$

Characterization III of DT(P)

- Definition: Let T be a triangulation of P and let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{3 m}$ be the angles of the m triangles in T sorted by increasing value. Then $A(T)=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{3 m}\right)$ is called the angle vector of T.
- Definition: A triangulation T is called angle optimal $\Leftrightarrow A(T)>A\left(T^{\prime}\right)$ for any other triangulation of the same point set P.
- Let T^{\prime} be a triangulation that contains an illegal edge, and let $T^{\prime \prime}$ be the resulting triangulation after flipping this edge. Then $A\left(T^{\prime \prime}\right)>A\left(T^{\prime}\right)$.
- $\quad T$ is angle optimal $\Rightarrow T$ is legal $\Rightarrow T=\mathrm{DT}(P)$
- Characterization III: Let T be a triangulation of P. Then $T=\mathrm{DT}(P) \Leftrightarrow T$ is angle optimal.
(If P is not in general position, then any triangulation obtained by triangulating the faces maximizes the minimum angle.)

