CMPS 3130/6130 Computational Geometry - Spring 15

4. Homework

Due $\mathbf{3 / 1 9 / 1 5}$ before class

1. Worst-Case DT Runtime (8 points)

Give an example that shows that the worst-case runtime of the randomized algorithm to compute the Delaunay triangulation of a set of n points in the plane is $\Omega\left(n^{2}\right)$. (Hint: It might help to play with one of the Delaunay triangulation programs.)

2. Sum of Edge Lengths (8 points)

It appears that illegal edges are often long edges, so it is a natural question to ask whether the Delaunay triangulation might minimize edge lengths. Give an example which shows that the Delaunay triangulation of a point set is not always the triangulation with the minimum sum of edge lengths.
3. Gabriel Graph (12 points)

Let P be a set of n points in the plane. The Gabriel $\operatorname{graph} G G(P)$ is defined as follows: Two points $p, q \in P$ are connected by an edge in $G G(P)$ iff the circle with diameter $p q$ does not contain any other point of P in its interior.
(a) Prove that $D T(P)$ contains $G G(P)$. I.e., every edge in $G G(P)$ is also a Delaunay edge.
(b) Prove that p and q are adjacent in $G G(P)$ if and only if the Delaunay edge between p and q intersects its dual Voronoi edge.
(c) Give an $O(n \log n)$ time algorithm to compute $G G(P)$.

4. Edge Flips (12 points)

(a) Show that any two triangulations of a convex polygon can be transformed into each other by a sequence of edge flips.
(b) Show that any two triangulations of a planar point set can be transformed into each other by a sequence of edge flips.
5. Angle Optimality (graduate; 10 points)

Prove the Lemma on slide 7 of the Delaunay I slides: Let $p_{i}, p_{j}, p_{k}, p_{l} \in P$. Then $\overline{p_{i} p_{j}}$ is illegal $\Leftrightarrow \min _{1 \leq i^{\prime} \leq 6} \alpha_{i^{\prime}}<\min _{1 \leq i^{\prime} \leq 6} \alpha_{i^{\prime}}^{\prime}$.

Hint: Use Thales' theorem.

