CMPS 3130/6130 Computational Geometry - Spring 15

1. Homework

Due 2/19/15 before class

1. Crawfish Guards ($\mathbf{1 2}$ points)

For the simple polygon P below:
(a) Apply the method employed by the 3-coloring-based proof to obtain a set of at most $\left\lfloor\frac{n}{3}\right\rfloor$ vertex guards that guard P.
(b) By inspection, obtain the minimum number of vertex guards necessary to guard P. Justify your answer.
(c) By inspection, obtain the minimum number of point guards necessary to guard P, i.e., guards are allowed to be anywhere in the interior or on the boundary of P. Justify your answer.

FLIP OVER TO BACK PAGE \Longrightarrow

2. Guarding Boundary vs. Interior (8 points)

Give an example of a polygon together with a placement of vertex guards, such that the whole polygon boundary is guarded but not the whole interior.

3. Triangulation in Quadratic Time (10 points)

Give an algorithm for triangulating a simple polygon that is based on the earcutting theorem. Your algorithm should run in $O\left(n^{2}\right)$ time, where n is the number of vertices of the polygon. Show that your algorithm has indeed this runtime.
4. Edge Flip (10 points)

An edge flip is an operation that switches the diagonal of a quadrilateral. Assume the quadrilateral below is given in a DCEL, and you are given a reference to e. Give code that flips e and updates the DCEL accordingly.

5. Stabbing Number and Triangulation (graduate; 10 points)

The stabbing number of a triangulated simple polygon P is the maximum number of diagonals intersected by any line segment interior to P. Give an algorithm that computes a triangulation of a convex polygon that has stabbing number $O(\log n)$. Prove that the computed triangulation has indeed stabbing number $O(\log n)$.

