CMPS 3130/6130 Computational Geometry - Spring 15

$$
1 / 22 / 15
$$

1. Homework
 Due $2 / 5 / 15$ before class

1. Point location data structure for convex polygons (10 points)

Describe an efficient data structure to preprocess a convex n-gon P in the plane, such that given a query point q it can be answered in $O(\log n)$ time whether $q \in P$ or not. Analyze the preprocessing time and the space requirement of your data structure, and make both as efficient as possible.

2. Line segment intersection ($\mathbf{1 0}$ points)

Given two line segments $\overline{a b}$ and $\overline{c d}$ in the plane, where $a, b, c, d \in \mathbb{R}^{2}$. The goal is to test them for intersection.
(a) (5 points) Express each line segment as a convex combination, and use this representation to determine if the two line segments intersect. (Hint: Each line segment is now a function. Equate them, and solve a linear equation system.)
(b) (5 points) Explain how you can use one or more orientation tests to test if the two line segments intersect. (Hint: Case analysis. Draw pictures of examples, and determine important configurations of a, b, c, d.)

3. Lower bounds (9 points)

Consider the following problems:
Sorting: Given a set $X=\left\{x_{1}, \ldots, x_{n}\right\}$ of n numbers, output the same numbers in non-decreasing order.
Element Uniqueness: Given a set $X=\left\{x_{1}, \ldots, x_{n}\right\}$ of n numbers, are there i, j, with $i \neq j$, such that $x_{i}=x_{j}$?
Closest Pair: Given a point set $P=\left\{p_{1}, \ldots, p_{n}\right\} \in \mathbb{R}^{2}$, output the closest pair of points in P.
All Nearest Neighbors: Given a point set $P=\left\{p_{1}, \ldots, p_{n}\right\} \in \mathbb{R}^{2}$. Compute for each point in P its nearest neighbor in P (i.e., point at minimum distance).
(a) Prove a lower bound of $\Omega(n \log n)$ for Sorting, by reducing from Element Uniqueness (i.e., by using the knowledge that element Uniqueness has a lower bound of $\Omega(n \log n)$).
(b) Prove a lower bound of $\Omega(n \log n)$ for Closest Pair by reducing from an appropriate problem.
(c) Prove a lower bound of $\Omega(n \log n)$ for All Nearest Neighbors by reducing from an appropriate problem.

4. Visible segments sweep (11 points)

Let S be a set of n disjoint line segments in the plane, and let p be a point not on any of the line segments of S. We wish to determine all line segments of S that P can see, i.e., all line segments of S that contain some point q so that the open segment $\stackrel{\vdash-1}{ }$ does not intersect any line segment of S.
Give an $O(n \log n)$ time algorithm for this problem that uses a rotating half-line with its endpoint at p.

5. Convex Hull (graduate; 10 points)

Let $S \subseteq \mathbb{R}^{2}$ be a finite point set. Denote with $C H(S)$ the convex hull of S.
(a) Let P be the convex polygon whose boundary vertices are points in S and that contains all points in S. Prove that P is uniquely defined and that $C H(S)=P$.
(b) Let $C(S)$ be the set of all convex combinations of points in S. Prove that $C(S)=C H(S)$. (Hint: Prove that $C(S)$ is convex.)

