CMPS 3120 Computational Geometry - Spring 13

$4 / 3 / 13$

5. Homework

Due Tuesday 4/16/13 before class

1. Railway Tracks (10 points)

On n parallel railway tracks n trains are going with constant speeds v_{1}, \ldots, v_{n}. At time $t=0$ the trains are at positions k_{1}, \ldots, k_{n}.

Give an $O(n \log n)$ time algorithm that detects all trains that at some moment in time are leading.
(Hint: Use halfplane intersection.)

2. Range Counting (5 points)

Show how to augment a 1D range tree of n elements such that range counting queries can be answered in $O(\log n)$ time. Argue that your augmentation does not change the asympotic preprocessing time and the asymptotic space complexity.

3. Range Tree Construction (10 points)

(a) Describe a recursive algorithm that constructs a 1D range tree for a sorted set of n numbers in $O(n)$ time.
(b) Same as above, but for a set of n unsorted numbers. Your algorithm should run in $O(n \log n)$ time.
(c) Describe a recursive algorithm that constructs a 2 D range tree for a set of n two-dimensional points in $O(n \log n)$ time.
(Hint: Use a bottom-up approach, and the merge-routine from mergesort.)

4. Smallest Rectangle Queries (10 points)

Let P be a set of n points in the plane; you may assume that they are in general position. Devise a data structure of size $O(n \log n)$ to answer queries of the following form in $O\left(\log ^{2} n\right)$ time:

Given a vertical line segment s and an integer k, find the smallest rectangle that has s as its left side and which contains at least k points. If no such rectangle exists then indicate this.
(Hint: Use 2D range trees with fractional cascading. Where does the extra logfactor come from in the query time?)

