4. Homework

Due Tuesday 4/2/13 before class

1. Worst-Case DT Runtime (5 points)

Give an example that shows that the worst-case runtime of the randomized algorithm to compute the Delaunay triangulation of a set of n points in the plane is $\Omega\left(n^{2}\right)$. (Hint: It might help to play with one of the Delaunay triangulation programs.)

2. Voronoi (10 points)

We saw in class that the Voronoi diagram of a set of points in \mathbb{R}^{2} is the projection of the upper envelope of the dual lifted set of planes in \mathbb{R}^{3}. What does the projection of the lower envelope correspond to? Similarly, what does the projection of the upper convex hull of the points lifted to \mathbb{R}^{3} correspond to?
Answer these questions by researching on the internet; as usual, cite the source you were using and give an explanation in your own words.

3. Convex Hull of Intersections ($\mathbf{1 0}$ points)

Let \mathcal{L} be a set of n lines in the plane, no two of which are parallel. Let S be the set of all $O\left(n^{2}\right)$ intersection points between any two lines in \mathcal{L}.
(a) Give an $O(n \log n)$ time algorithm to compute an axis-parallel rectangle that contains S.
(b) [Optional; for extra credit] Give an $O(n \log n)$ time algorithm that computes $C H(S)$.
(Hint: Your algorithms cannot compute all points in S explicitly. Sort all lines by slope, and prove that it is enough to consider only a certain subset of intersection points.)

4. Linear Separator (10 points)

Let $R=\left\{r_{1}, \ldots, r_{m}\right\}$ be set of m red points, and let $B=\left\{b_{1}, \ldots, b_{n}\right\}$ be a set of n blue points in the plane. A line l is called a linear separator if all points of R lie on one side of l and all points of B lie on the other side. (You may assume appropriate general position, and may disregard points that lie exactly on the line.) Use point-line duality to develop an algorithm for this problem which runs in expected linear time. (Hint: Linear Programming.)

