CMPS 3120 Computational Geometry - Spring 13

2. Homework

Due 2/21/13 before class

1. Guarding the Fleur-de-Lis (12 points)

For the simple polygon P below:
(a) Apply the method employed by the 3-coloring-based proof to obtain a set of at most $\left\lfloor\frac{n}{3}\right\rfloor$ vertex guards that guard P.
(b) By inspection, obtain the minimum number of vertex guards necessary to guard P. Justify your answer.
(c) By inspection, obtain the minimum number of point guards necessary to guard P, i.e., guards are allowed to be anywhere in the interior or on the boundary of P. Justify your answer.

2. Guarding Boundary vs. Interior (5 points)

Give an example of a polygon together with a placement of vertex guards, such that the whole polygon boundary is guarded but not the whole interior.
3. Points inside triangles (8 points) Let S be a set of n triangles in the plane. The boundaries of the triangles are disjoint, but it is possible that a triangle lies completely inside another triangle. Let P be a set of n points in the plane. Give an $O(n \log n)$ algorithm that reports each point in P lying outside all triangles.
4. Triangulating a Point Set (5 points)

A triangulation of a set of points P in the plane is a simple, planar embedded, connected graph $T=(P, E)$ such that (i) every edge in E is a line segment, (ii) the outer face is bounded by edges of $C H(P)$, and (iii) all inner faces are triangles. Explain how to adapt the triangulation algorithm that we discussed in class to efficiently triangulate a set of n points.

