CMPS 2200 - Fall 2012

Graphs

Carola Wenk

Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

Graphs (review)

Definition. A directed graph (digraph) $G=(V, E)$ is an ordered pair consisting of

- a set V of vertices (singular: vertex),
- a set $E \subseteq V \times V$ of edges.

In an undirected graph $G=(V, E)$, the edge set E consists of unordered pairs of vertices.
In either case, we have $|E|=O\left(|V|^{2}\right)$.
Moreover, if G is connected, then $|E| \geq|V|-1$.

Adjacency-matrix representation

The adjacency matrix of a graph $G=(V, E)$, where $V=\{1,2, \ldots, n\}$, is the matrix $A[1 \ldots n, 1 \ldots n]$ given by

$$
A[i, j]= \begin{cases}1 & \text { if }(i, j) \in \mathrm{E}, \\ 0 & \text { if }(i, j) \notin \mathrm{E} .\end{cases}
$$

A	1	2	3	4
1	0	1	1	0
2	0	0	1	0
3	0	0	0	0
4	0	0	1	0

$\Theta\left(|V|^{2}\right)$ storage \Rightarrow dense representation.

Adjacency-list representation

An adjacency list of a vertex $v \in V$ is the list $\operatorname{Adj}[v]$ of vertices adjacent to v.

$$
\begin{aligned}
& \operatorname{Adj}[1]=\{2,3\} \\
& \operatorname{Adj}[2]=\{3\} \\
& \operatorname{Adj}[3]=\{ \} \\
& \operatorname{Adj}[4]=\{3\}
\end{aligned}
$$

For undirected graphs, $|\operatorname{Adj}[v]|=\operatorname{degree}(v)$.
For digraphs, $|\operatorname{Adj}[v]|=$ out-degree(v).

Adjacency-list representation

Handshaking Lemma:

Every edge is counted twice

- For undirected graphs:

$$
\sum_{v \in V} \text { degree }(v)=2|E|
$$

- For digraphs:

$$
\sum_{v \in V} \text { in-degree }(v)+\sum_{v \in V} \text { out-degree }(v)=2|\mathrm{E}|
$$

\Rightarrow adjacency lists use $\Theta(|V|+|E|)$ storage
\Rightarrow a sparse representation
\Rightarrow We usually use this representation, unless stated otherwise

Graph Traversal

Let $G=(V, E)$ be a (directed or undirected) graph, given in adjacency list representation.
$|V|=n,|E|=m$
A graph traversal visits every vertex:

- Breadth-first search (BFS)
- Depth-first search (DFS)

Breadth-First Search (BFS)

$\operatorname{BFS}(G=(V, E))$

Mark all vertices in G as "unvisited" // time=0
Initialize empty queue Q
for each vertex $v \in V$ do
if v is unvisited visit $v / /$ time++ Q.enqueue(v) BFS_iter(G)

BFS_iter(G)
while Q is non-empty do

$$
v=Q . \text { dequeue() }
$$

for each w adjacent to v do if w is unvisited visit w // time++ Add edge (v, w) to T Q.enqueue(w)

Example of breadth-first search

Q:

Example of breadth-first search

Q: a b d cefgih

Example of breadth-first search

Q: a b d cefgih

Breadth-First Search (BFS)

BFS runtime

- Each vertex is marked as unvisited in the beginning $\Rightarrow \mathrm{O}(n)$ time
- Each vertex is marked at most once, enqueued at most once, and therefore dequeued at most once
- The time to process a vertex is proportional to the size of its adjacency list (its degree), since the graph is given in adjacency list representation
$\Rightarrow \mathrm{O}(\mathrm{m})$ time
- Total runtime is $\mathrm{O}(n+m)=\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$

Depth-First Search (DFS)

$\operatorname{DFS}(G=(V, E))$
Mark all vertices in G as "unvisited" // time=0 for each vertex $v \in V$ do if v is unvisited

DFS_rec (G,v)
DFS_rec (G, v)
mark v as "visited" // d[v]=++time
for each w adjacent to v do
if w is unvisited
Add edge (v, w) to tree T
DFS_rec (G,w)
mark v as "finished" // f[v]=++time

Example of depth-first search

Store edges in
π : a b c d e f g h i predecessor array

Example of depth-first search

Store edges in
π : a b c d e f g h i predecessor array

Example of depth-first search

Store edges in
$\pi: \frac{\mathrm{a} \text { b c d e f g h i }}{-\mathrm{a} \mathrm{b}}$ predecessor array

Example of depth-first search

Store edges in
$\pi: \frac{\mathrm{ab} \text { c d e f g h i }}{-\mathrm{a} \mathrm{b} \mathrm{b}}$ predecessor array

Example of depth-first search

Store edges in
π : a b c d e f g h i predecessor array

Example of depth-first search

Store edges in
$\pi: \frac{\mathrm{ab} \text { b d e f g h i }}{-\mathrm{a} \mathrm{b} \mathrm{bef}}$

Example of depth-first search

Store edges in
$\pi: \frac{\text { a b c d e f g h i }}{-\mathrm{a} \mathrm{b} \mathrm{befg}}$ predecessor array

Example of depth-first search

Store edges in
$\pi: \frac{\text { a b c d e f g h i }}{-\mathrm{a} \mathrm{b} \mathrm{befg}}$
predecessor array

Example of depth-first search

Store edges in
$\pi: \frac{\text { a b c d e f g h i }}{-\mathrm{a} \mathrm{b} \mathrm{befg}}$
predecessor array

Example of depth-first search

Store edges in
$\pi: \frac{\mathrm{ab} \text { b d e f g h i }}{-\mathrm{a} \mathrm{b} \mathrm{b} \mathrm{e} \mathrm{f} \mathrm{g} \mathrm{f}}$ predecessor array

Example of depth-first search

Store edges in
$\pi: \frac{\mathrm{a} \text { b c d e f g h i }}{-\mathrm{a} \mathrm{b} \mathrm{i} \mathrm{bef} \mathrm{g} \mathrm{f}}$ predecessor array

Example of depth-first search

Store edges in
π : a b c d e f g h i predecessor array

Example of depth-first search

Store edges in
$\pi: \frac{\mathrm{a} \text { b c d e f g h i }}{-\mathrm{a} \mathrm{b} \mathrm{i} \mathrm{bef} \mathrm{g} \mathrm{f}}$ predecessor array

Example of depth-first search

Store edges in
$\pi: \frac{\mathrm{a} \text { b c d e f g h i }}{-\mathrm{a} \mathrm{b} \mathrm{i} \mathrm{bef} \mathrm{g} \mathrm{f}}$ predecessor array

Example of depth-first search

Store edges in
$\pi: \frac{\mathrm{a} \text { b c d e f g h i }}{-\mathrm{a} \mathrm{b} \mathrm{i} \mathrm{bef} \mathrm{g} \mathrm{f}}$
predecessor array

Example of depth-first search

Store edges in
$\pi: \frac{\text { a b c d e f g h i }}{-\mathrm{a} \mathrm{b} \mathrm{i} \mathrm{b} \mathrm{e} \mathrm{f} \mathrm{g} \mathrm{f}}$
predecessor array

Example of depth-first search

Store edges in
$\pi: \frac{\mathrm{a} \text { b c d e f g h i }}{-\mathrm{a} \mathrm{b} \mathrm{i} \mathrm{bef} \mathrm{g} \mathrm{f}}$
predecessor array

Depth-First Search (DFS)

$\operatorname{DFS}(G=(V, E))$
Mark all vertices in G as "unvisited" // time=0
 without DFS_rec
for each vertex $v \in V$ do
if v is unvisited
DFS_rec(G,v)
DFS_rec (G, v)
mark v as "visited" // d[v]=++time
for each w adjacent to v do
if w is unvisited
Add edge (v, w) to tree T DFS_rec(G,w)
mark v as "finished" // f[v]=++time
\Rightarrow With Handshaking Lemma, all recursive calls are $\mathrm{O}(m)$, for a total of $\mathrm{O}(n+m)$ runtime

DFS runtime

- Each vertex is visited at most once $\Rightarrow \mathrm{O}(n)$ time
- The body of the for loops (except the recursive call) take constant time per graph edge
- All for loops take $O(m)$ time
- Total runtime is $\mathrm{O}(n+m)=\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$

- back edge, if u connects to an ancestor v in a depthfirst tree. It holds $d(u)>d(v)$ and $f(u)<f(v)$.
- forward edge, if it connects u to a descendant v in a depth-first tree. It holds $d(u)<d(v)$.
- cross edge, if it is any other edge. It holds $d(u)>d(v)$ and $f(u)>f(v)$.

Paths, Cycles, Connectivity

Let $G=(V, E)$ be a directed (or undirected) graph

- A path from v_{1} to v_{k} in G is a sequence of vertices $v_{1}, v_{2}, \ldots, v_{\mathrm{k}}$ such that $\left(v_{\mathrm{i}}, v_{\{i+1\}}\right) \in E$ (or $\left\{v_{\mathrm{i}}, v_{\{i+1\}}\right\} \in E$ if G is undirected) for all $i \in\{1, \ldots, k-1\}$.
- A path is simple if all vertices in the path are distinct.
- A path $v_{1}, v_{2}, \ldots, v_{\mathrm{k}}$ forms a cycle if $v_{1}=v_{\mathrm{k}}$.
- A graph with no cycles is acyclic.
- An undirected acyclic graph is called a tree. (Trees do not have to have a root vertex specified.)
- A directed acyclic graph is a DAG. (A DAG can have undirected cycles if the direction of the edges is not considered.)
- An undirected graph is connected if every pair of vertices is connected by a path. A directed graph is strongly connected if for every pair $u, v \in V$ there is a path from u to v and there is a path from v to u.
- The (strongly) connected components of a graph are the equivalence classes of vertices under this reachability relation.

DAG Theorem

Theorem: A directed graph G is acyclic
\Leftrightarrow a depth-first search of G yields no back edges.

Proof:

" \Rightarrow ": Suppose there is a back edge (u,v). Then by definition of a back edge there would be a cycle.
" \Leftarrow ": Suppose G contains a cycle c. Let v be the first vertex to be discovered in c, and let u be the preceding vertex in $\mathrm{c} . \mathrm{v}$ is an ancestor of u in the
 depth-first forest, hence (u, v) is a back edge.

Topological Sort

Topologically sort the vertices of a directed acyclic graph (DAG):

- Determine $f: V \rightarrow\{1,2, \ldots,|V|\}$ such that $(u, v) \in E$ $\Rightarrow f(u)<f(v)$.

Topological Sort Algorithm

- Store vertices with in-degree 0 in a queue Q .
- While Q is not empty
- Dequeue vertex v, and give it the next number
- Decrease in-degree of all adjacent vertices by 1
- Enqueue all vertices with in-degree 0

Q: a , b, c, e, d, f, g, i, h

Topological Sort Runtime

Runtime:

- $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$ because every edge is touched once, and every vertex is enqueued and dequeued exactly once

DFS-Based Topological Sort Algorithm

- Call DFS on the directed acyclic graph $G=(V, E)$
\Rightarrow Finish time for every vertex
- Reverse the finish times (highest finish time becomes the lowest finish time,...)
\Rightarrow Valid function $f^{\prime}: V \rightarrow\{1,2, \ldots,|V|\}$ such that

$$
(u, v) \in E \Rightarrow f^{\prime}(u)<f^{\prime}(v)
$$

Runtime: $\mathrm{O}(|V|+|E|)$

DFS-Based Topological Sort

- Run DFS:

- Reverse finish times:

DFS-Based Top. Sort Correctness

- Need to show that for any $(u, v) \in E$ holds $f(v)<f(u)$. (since we consider reversed finish times)
- Consider exploring edge (u, v) in DFS:
- v cannot be visited and unfinished (and hence an ancestor in the depth first tree), since then (u, v) would be a back edge (which by the DAG lemma cannot happen).
- If v has not been visited yet, it becomes a descendant of u, and hence $f(v)<f(u)$. (tree edge)
- If v has been finished, $f(v)$ has been set, and u is still being explored, hence $f(u)>f(v)$ (forward edge, cross edge) .

Topological Sort Runtime

Runtime:

- $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$ because every edge is touched once, and every vertex is enqueued and dequeued exactly once
- DFS-based algorithm: $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$

