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Dynamic tablesy
Task: Store a dynamic set in a table/array. Elements 
can only be inserted and all inserted elements arecan only be inserted, and all inserted elements are 
stored in one contiguous part in the array. The table 
should be as small as possible, but large enough so 

Problem: We may not know the proper size in 

p , g g
that it won’t overflow.

advance!

IDEA: Whene er the table o erflo s “gro ” it b
Solution: Dynamic tables.
IDEA: Whenever the table overflows, “grow” it by 
allocating (via malloc or new) a new, larger table.  
Move all items from the old table into the new one,
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Move all items from the old table into the new one, 
and free the storage for the old table.



Example of a dynamic tablep y

1 I 11. INSERT 1

2. INSERT overflow
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Example of a dynamic tablep y

1 I1. INSERT
2. INSERT
3 I S 3

2
1

3. INSERT
4. INSERT
5 INSERT 5

4
3

6. INSERT 6
5. INSERT 5

77 INSERT 77. INSERT
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Worst-case analysisy

Consider a sequence of n insertions TheConsider a sequence of n insertions.  The 
worst-case time to execute one insertion is 
Ο(n).  Therefore, the worst-case time for n( ) ,
insertions is n ·Ο(n) = Ο(n2).

WRONG! In fact the worst-case cost forWRONG! In fact, the worst-case cost for 
n insertions is only Θ(n) Ο(n2).

Let’s see why.
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Tighter analysisg y

Let ci = the cost of the i th insertion

i 1 2 3 4 5 6 7 8 9 10
sizei 1 2 4 4 8 8 8 8 16 16

ci
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Tighter analysisg y

Let ci = the cost of the i th insertion

= 1 + cost to double array size

i 1 2 3 4 5 6 7 8 9 10
sizei 1 2 4 4 8 8 8 8 16 16

1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1
? ? ? ? ? ? ? ? ? ?

ci
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Tighter analysisg y

Let ci = the cost of the i th insertion

= 1 + cost to double array size

i 1 2 3 4 5 6 7 8 9 10
sizei 1 2 4 4 8 8 8 8 16 16

1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1
0 1 2 0 4 0 0 0 8 0

ci
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Tighter analysisg y

Let ci = the cost of the i th insertion

= 1 + cost to double array size

i 1 2 3 4 5 6 7 8 9 10
sizei 1 2 4 4 8 8 8 8 16 16

1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1
0 1 2 0 4 0 0 0 8 0

ci 1 2 3 1 5 1 1 1 9 1

10/29/2012 CMPS 2200 Intro. to Algorithms 18



Tighter analysis (continued)g y ( )
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Thus, the average cost of each dynamic-table 
ti i Θ( )/ Θ(1)
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operation is Θ(n)/n = Θ(1).



Amortized analysisy
An amortized analysis is any strategy for 
analyzing a sequence of operations:analyzing a sequence of operations:
• compute the total cost of the sequence, OR 

• amortized  cost of an operation = average 
cost per operation averaged over the numbercost per operation, averaged over the number 
of operations in the sequence

• amortized cost can be small, even though a 
single operation within the sequence might be 
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expensive



Amortized analysisy

E en tho gh e’re taking a erages ho e erEven though we’re taking averages, however, 
probability is not involved!

• An amortized analysis guarantees the 
average performance of each operation inaverage performance of each operation in 
the worst case.
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Types of amortized analysesyp y
Three common amortization arguments:

the t method• the aggregate method,
• the accounting method,
• the potential method• the potential method.
We’ve just seen an aggregate analysis.  
The aggregate method, though simple, lacks the 
precision of the other two methods.  In particular, p p ,
the accounting and potential methods allow a 
specific amortized cost to be allocated to each 
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operation.



Accounting methodg
• Charge i th operation a fictitious amortized cost ĉi, 

where $1 pays for 1 unit of work (i e time)where $1 pays for 1 unit of work (i.e., time).
• This fee is consumed to perform the operation, and
• any amount not immediately consumed is stored in y y

the bank for use by subsequent operations.
• The bank balance must not go negative!  We must 

ensure that

∑∑ ≤
n

i

n

i cc ˆ∑∑
== i

i
i

i
11for all n.

• Thus the total amortized costs provide an upper
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Thus, the total amortized costs provide an upper 
bound on the total true costs.



Accounting analysis of 
dynamic tablesdynamic tables

Charge an amortized cost of ĉi = $3 for the i th 
i iinsertion.
• $1 pays for the immediate insertion.

$2 i t d f l t t bl d bli• $2 is stored for later table doubling.
When the table doubles, $1 pays to move a 

t it d $1 t ld it
Example:
recent item, and $1 pays to move an old item.

$0 $0 $0 $0 $2 $2 $2 $2 overflow
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Accounting analysis of 
dynamic tablesdynamic tables

Charge an amortized cost of ĉi = $3 for the i th 
i iinsertion.
• $1 pays for the immediate insertion.

$2 i t d f l t t bl d bli• $2 is stored for later table doubling.
When the table doubles, $1 pays to move a 

t it d $1 t ld it
Example:
recent item, and $1 pays to move an old item.

overflow
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Accounting analysis of 
dynamic tablesdynamic tables

Charge an amortized cost of ĉi = $3 for the i th 
i iinsertion.
• $1 pays for the immediate insertion.

$2 i t d f l t t bl d bli• $2 is stored for later table doubling.
When the table doubles, $1 pays to move a 

t it d $1 t ld it
Example:
recent item, and $1 pays to move an old item.
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Accounting analysis 
(continued)(continued)

Key invariant: Bank balance never drops below 0.  
Th h f h i d idThus, the sum of the amortized costs provides an 
upper bound on the sum of the true costs.

i 1 2 3 4 5 6 7 8 9 10
sizei 1 2 4 4 8 8 8 8 16 16i

ci 1 2 3 1 5 1 1 1 9 1
ĉ 3 3 3 3 3 3 3 3 3 3ĉi 3 3 3 3 3 3 3 3 3 3

banki 2 3 3 5 3 5 7 9 3 5
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Incrementing a Binary Counter
Given: A k-bit binary counter A[0,1,…,k-1], initialized with 

0 0 0 Th t t th f ll i INCREMENT0,0,…,0. The counter supports the following INCREMENT
operation: 

INCREMENT(A) // increases counter by 1INCREMENT(A) // increases counter by 1
i ← 0
while i<length(A) and A[i]=1 do

A[i] ← 0[ ]
i++

if i<length(A) then
A[i] ← 1

• Question: In a sequence of n INCREMENT operations, what is 
the amortized runtime of one INCREMENT operation?
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Binary Counter Exampley p
Example for k=8 and n=9:

1→0
flip

0→1
flip

Initial counter 0 0 0 0 0 0 0 0
After 1 increment 0 0 0 0 0 0 0 1
After 2 increments 0 0 0 0 0 0 1 0

$1
$1$1
$1After 3 increments 0 0 0 0 0 0 1 1

After 4 increments 0 0 0 0 0 1 0 0
After 5 increments 0 0 0 0 0 1 0 1

$1$2
$1

$1

$1$1After 6 increments 0 0 0 0 0 1 1 0
After 7 increments 0 0 0 0 0 1 1 1
After 8 increments 0 0 0 0 1 0 0 0

$1$1
$1
$1$3
$1After 9 increments 0 0 0 0 1 0 0 1

• The worst-case runtime of one INCREMENT operation is O(k)

$1
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• For n operations the total is O(nk)



Accounting Methodg
• Charge $2 to set a bit to 1 (0→1 flip)

$1 pays for the actual flip

Store $1 on the bit as credit to be used later when this bit is 
flipped back to 0

• Charge $0 to set a bit to 0 (1→0 flip)

Every 1 in the counter has $1 credit on it, which is used to 
pay for this flip
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Binary Counter Exampley p
Example for k=8 and n=9:

1→0
flip

0→1
flip

1→0
flip

0→1
flip

Initial counter 0 0 0 0 0 0 0 0
After 1 increment 0 0 0 0 0 0 0 1
After 2 increments 0 0 0 0 0 0 1 0

$1
$1$1
$1

$2
$2$0
$2After 3 increments 0 0 0 0 0 0 1 1

After 4 increments 0 0 0 0 0 1 0 0
After 5 increments 0 0 0 0 0 1 0 1

$1$2
$1

$1

$1$1

$2$0
$2

$2

$2$0After 6 increments 0 0 0 0 0 1 1 0
After 7 increments 0 0 0 0 0 1 1 1
After 8 increments 0 0 0 0 1 0 0 0

$1$1
$1
$1$3
$1

$2$0
$2
$2$0
$2After 9 increments 0 0 0 0 1 0 0 1 $1 $2

Actual cost Amortized cost
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Accounting Methodg

⇒ Since each INCREMENT operation is composed of 
one 0→1 flip and possibly multiple 1→0 flips, theone 0→1 flip and possibly multiple 1→0 flips, the 
amortized runtime of one INCREMENT operation is 
O(1). 
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Conclusions
• Amortized costs can provide a clean abstraction 

of data structure performanceof data-structure performance.
• Any of the analysis methods can be used when 

ti d l i i ll d f b t han amortized analysis is called for, but each 
method has some situations where it is arguably 
the simplestthe simplest.

• Different schemes may work for assigning 
amortized costs in the accounting methodamortized costs in the accounting method, 
sometimes yielding radically different bounds.
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