
CMPS 2200 – Fall 2012

Amortized Analysis
C l W kCarola Wenk

Slides courtesy of Charles Leiserson with changes
by Carola Wenk

10/29/2012 CMPS 2200 Intro. to Algorithms 1

Dynamic tablesy
Task: Store a dynamic set in a table/array. Elements
can only be inserted and all inserted elements arecan only be inserted, and all inserted elements are
stored in one contiguous part in the array. The table
should be as small as possible, but large enough so

Problem: We may not know the proper size in

p , g g
that it won’t overflow.

advance!

IDEA: Whene er the table o erflo s “gro ” it b
Solution: Dynamic tables.
IDEA: Whenever the table overflows, “grow” it by
allocating (via malloc or new) a new, larger table.
Move all items from the old table into the new one,

10/29/2012 CMPS 2200 Intro. to Algorithms 2

Move all items from the old table into the new one,
and free the storage for the old table.

Example of a dynamic tablep y

1 I 11. INSERT 1

2. INSERT overflow

10/29/2012 CMPS 2200 Intro. to Algorithms 3

Example of a dynamic tablep y

1 I 11. INSERT
2. INSERT overflow

10/29/2012 CMPS 2200 Intro. to Algorithms 4

Example of a dynamic tablep y

1 I 1
2

1. INSERT
2. INSERT

10/29/2012 CMPS 2200 Intro. to Algorithms 5

Example of a dynamic tablep y

1 I1. INSERT
2. INSERT

1
2

3 I S3. INSERT overflow

10/29/2012 CMPS 2200 Intro. to Algorithms 6

Example of a dynamic tablep y

1 I1. INSERT
2. INSERT
3 I S

2
1

3. INSERT overflow

10/29/2012 CMPS 2200 Intro. to Algorithms 7

Example of a dynamic tablep y

1 I1. INSERT
2. INSERT
3 I S

2
1

3. INSERT

10/29/2012 CMPS 2200 Intro. to Algorithms 8

Example of a dynamic tablep y

1 I1. INSERT
2. INSERT
3 I S 3

2
1

3. INSERT
4. INSERT 4

3

10/29/2012 CMPS 2200 Intro. to Algorithms 9

Example of a dynamic tablep y

1 I1. INSERT
2. INSERT
3 I S 3

2
1

3. INSERT
4. INSERT
5 INSERT

4
3

fl5. INSERT overflow

10/29/2012 CMPS 2200 Intro. to Algorithms 10

Example of a dynamic tablep y

1 I1. INSERT
2. INSERT
3 I S 3

2
1

3. INSERT
4. INSERT
5 INSERT

4
3

fl5. INSERT overflow

10/29/2012 CMPS 2200 Intro. to Algorithms 11

Example of a dynamic tablep y

1 I1. INSERT
2. INSERT
3 I S 3

2
1

3. INSERT
4. INSERT
5 INSERT

4
3

5. INSERT

10/29/2012 CMPS 2200 Intro. to Algorithms 12

Example of a dynamic tablep y

1 I1. INSERT
2. INSERT
3 I S 3

2
1

3. INSERT
4. INSERT
5 INSERT 5

4
3

6. INSERT 6
5. INSERT 5

77 INSERT 77. INSERT

10/29/2012 CMPS 2200 Intro. to Algorithms 13

Worst-case analysisy

Consider a sequence of n insertions TheConsider a sequence of n insertions. The
worst-case time to execute one insertion is
Ο(n). Therefore, the worst-case time for n() ,
insertions is n ·Ο(n) = Ο(n2).

WRONG! In fact the worst-case cost forWRONG! In fact, the worst-case cost for
n insertions is only Θ(n) Ο(n2).

Let’s see why.

10/29/2012 CMPS 2200 Intro. to Algorithms 14

Tighter analysisg y

Let ci = the cost of the i th insertion

i 1 2 3 4 5 6 7 8 9 10
sizei 1 2 4 4 8 8 8 8 16 16

ci

10/29/2012 CMPS 2200 Intro. to Algorithms 15

Tighter analysisg y

Let ci = the cost of the i th insertion

= 1 + cost to double array size

i 1 2 3 4 5 6 7 8 9 10
sizei 1 2 4 4 8 8 8 8 16 16

1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1
? ? ? ? ? ? ? ? ? ?

ci

10/29/2012 CMPS 2200 Intro. to Algorithms 16

Tighter analysisg y

Let ci = the cost of the i th insertion

= 1 + cost to double array size

i 1 2 3 4 5 6 7 8 9 10
sizei 1 2 4 4 8 8 8 8 16 16

1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1
0 1 2 0 4 0 0 0 8 0

ci

10/29/2012 CMPS 2200 Intro. to Algorithms 17

Tighter analysisg y

Let ci = the cost of the i th insertion

= 1 + cost to double array size

i 1 2 3 4 5 6 7 8 9 10
sizei 1 2 4 4 8 8 8 8 16 16

1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1 1
0 1 2 0 4 0 0 0 8 0

ci 1 2 3 1 5 1 1 1 9 1

10/29/2012 CMPS 2200 Intro. to Algorithms 18

Tighter analysis (continued)g y ()

c
n

=∑Cost of n insertions

⎣ ⎦)1log(
1

c

n
i

i=∑
−

=

Cost of n insertions

⎣ ⎦
2
)og(

0
n

j

j+≤ ∑
=

)(
3

n
n
Θ

≤
)(nΘ= .

Thus, the average cost of each dynamic-table
ti i Θ()/ Θ(1)

10/29/2012 CMPS 2200 Intro. to Algorithms 19

operation is Θ(n)/n = Θ(1).

Amortized analysisy
An amortized analysis is any strategy for
analyzing a sequence of operations:analyzing a sequence of operations:
• compute the total cost of the sequence, OR

• amortized cost of an operation = average
cost per operation averaged over the numbercost per operation, averaged over the number
of operations in the sequence

• amortized cost can be small, even though a
single operation within the sequence might be

10/29/2012 CMPS 2200 Intro. to Algorithms 20

expensive

Amortized analysisy

E en tho gh e’re taking a erages ho e erEven though we’re taking averages, however,
probability is not involved!

• An amortized analysis guarantees the
average performance of each operation inaverage performance of each operation in
the worst case.

10/29/2012 CMPS 2200 Intro. to Algorithms 21

Types of amortized analysesyp y
Three common amortization arguments:

the t method• the aggregate method,
• the accounting method,
• the potential method• the potential method.
We’ve just seen an aggregate analysis.
The aggregate method, though simple, lacks the
precision of the other two methods. In particular, p p ,
the accounting and potential methods allow a
specific amortized cost to be allocated to each

10/29/2012 CMPS 2200 Intro. to Algorithms 22

operation.

Accounting methodg
• Charge i th operation a fictitious amortized cost ĉi,

where $1 pays for 1 unit of work (i e time)where $1 pays for 1 unit of work (i.e., time).
• This fee is consumed to perform the operation, and
• any amount not immediately consumed is stored in y y

the bank for use by subsequent operations.
• The bank balance must not go negative! We must

ensure that

∑∑ ≤
n

i

n

i cc ˆ∑∑
== i

i
i

i
11for all n.

• Thus the total amortized costs provide an upper

10/29/2012 CMPS 2200 Intro. to Algorithms 23

Thus, the total amortized costs provide an upper
bound on the total true costs.

Accounting analysis of
dynamic tablesdynamic tables

Charge an amortized cost of ĉi = $3 for the i th
i iinsertion.
• $1 pays for the immediate insertion.

$2 i t d f l t t bl d bli• $2 is stored for later table doubling.
When the table doubles, $1 pays to move a

t it d $1 t ld it
Example:
recent item, and $1 pays to move an old item.

$0 $0 $0 $0 $2 $2 $2 $2 overflow

10/29/2012 CMPS 2200 Intro. to Algorithms 24

Accounting analysis of
dynamic tablesdynamic tables

Charge an amortized cost of ĉi = $3 for the i th
i iinsertion.
• $1 pays for the immediate insertion.

$2 i t d f l t t bl d bli• $2 is stored for later table doubling.
When the table doubles, $1 pays to move a

t it d $1 t ld it
Example:
recent item, and $1 pays to move an old item.

overflow

10/29/2012 CMPS 2200 Intro. to Algorithms 25

$0 $0 $0 $0 $0 $0 $0 $0

Accounting analysis of
dynamic tablesdynamic tables

Charge an amortized cost of ĉi = $3 for the i th
i iinsertion.
• $1 pays for the immediate insertion.

$2 i t d f l t t bl d bli• $2 is stored for later table doubling.
When the table doubles, $1 pays to move a

t it d $1 t ld it
Example:
recent item, and $1 pays to move an old item.

10/29/2012 CMPS 2200 Intro. to Algorithms 26

$0 $0 $0 $0 $0 $0 $0 $0 $2 $2 $2

Accounting analysis
(continued)(continued)

Key invariant: Bank balance never drops below 0.
Th h f h i d idThus, the sum of the amortized costs provides an
upper bound on the sum of the true costs.

i 1 2 3 4 5 6 7 8 9 10
sizei 1 2 4 4 8 8 8 8 16 16i

ci 1 2 3 1 5 1 1 1 9 1
ĉ 3 3 3 3 3 3 3 3 3 3ĉi 3 3 3 3 3 3 3 3 3 3

banki 2 3 3 5 3 5 7 9 3 5

10/29/2012 CMPS 2200 Intro. to Algorithms 27

Incrementing a Binary Counter
Given: A k-bit binary counter A[0,1,…,k-1], initialized with

0 0 0 Th t t th f ll i INCREMENT0,0,…,0. The counter supports the following INCREMENT
operation:

INCREMENT(A) // increases counter by 1INCREMENT(A) // increases counter by 1
i ← 0
while i<length(A) and A[i]=1 do

A[i] ← 0[]
i++

if i<length(A) then
A[i] ← 1

• Question: In a sequence of n INCREMENT operations, what is
the amortized runtime of one INCREMENT operation?

10/29/2012 CMPS 2200 Intro. to Algorithms 28

Binary Counter Exampley p
Example for k=8 and n=9:

1→0
flip

0→1
flip

Initial counter 0 0 0 0 0 0 0 0
After 1 increment 0 0 0 0 0 0 0 1
After 2 increments 0 0 0 0 0 0 1 0

$1
$1$1
$1After 3 increments 0 0 0 0 0 0 1 1

After 4 increments 0 0 0 0 0 1 0 0
After 5 increments 0 0 0 0 0 1 0 1

$1$2
$1

$1

$1$1After 6 increments 0 0 0 0 0 1 1 0
After 7 increments 0 0 0 0 0 1 1 1
After 8 increments 0 0 0 0 1 0 0 0

$1$1
$1
$1$3
$1After 9 increments 0 0 0 0 1 0 0 1

• The worst-case runtime of one INCREMENT operation is O(k)

$1

10/29/2012 CMPS 2200 Intro. to Algorithms 29

• For n operations the total is O(nk)

Accounting Methodg
• Charge $2 to set a bit to 1 (0→1 flip)

$1 pays for the actual flip

Store $1 on the bit as credit to be used later when this bit is
flipped back to 0

• Charge $0 to set a bit to 0 (1→0 flip)

Every 1 in the counter has $1 credit on it, which is used to
pay for this flip

10/29/2012 CMPS 2200 Intro. to Algorithms 30

Binary Counter Exampley p
Example for k=8 and n=9:

1→0
flip

0→1
flip

1→0
flip

0→1
flip

Initial counter 0 0 0 0 0 0 0 0
After 1 increment 0 0 0 0 0 0 0 1
After 2 increments 0 0 0 0 0 0 1 0

$1
$1$1
$1

$2
$2$0
$2After 3 increments 0 0 0 0 0 0 1 1

After 4 increments 0 0 0 0 0 1 0 0
After 5 increments 0 0 0 0 0 1 0 1

$1$2
$1

$1

$1$1

$2$0
$2

$2

$2$0After 6 increments 0 0 0 0 0 1 1 0
After 7 increments 0 0 0 0 0 1 1 1
After 8 increments 0 0 0 0 1 0 0 0

$1$1
$1
$1$3
$1

$2$0
$2
$2$0
$2After 9 increments 0 0 0 0 1 0 0 1 $1 $2

Actual cost Amortized cost

10/29/2012 CMPS 2200 Intro. to Algorithms 31

Accounting Methodg

⇒ Since each INCREMENT operation is composed of
one 0→1 flip and possibly multiple 1→0 flips, theone 0→1 flip and possibly multiple 1→0 flips, the
amortized runtime of one INCREMENT operation is
O(1).

10/29/2012 CMPS 2200 Intro. to Algorithms 32

Conclusions
• Amortized costs can provide a clean abstraction

of data structure performanceof data-structure performance.
• Any of the analysis methods can be used when

ti d l i i ll d f b t han amortized analysis is called for, but each
method has some situations where it is arguably
the simplestthe simplest.

• Different schemes may work for assigning
amortized costs in the accounting methodamortized costs in the accounting method,
sometimes yielding radically different bounds.

10/29/2012 CMPS 2200 Intro. to Algorithms 33

