
CMPS 2200 – Fall 2012

Order StatisticsOrder Statistics
Carola Wenk

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

10/3/12 CMPS 2200 Intro. to Algorithms 1

Order statisticsOrder statistics
Select the ith smallest of n elements (the
element with rank i).
• i = 1: minimum;;
• i = n: maximum;
• i = ⎣(n+1)/2⎦ or ⎡(n+1)/2⎤: median.() ()

Naive algorithm: Sort and index ith element.
W t i ti Θ(l + 1)Worst-case running time = Θ(n log n + 1)

= Θ(n log n),
i t (t i k t)

10/3/12 CMPS 2200 Intro. to Algorithms 2

using merge sort (not quicksort).

Randomized divide-and-
l ithconquer algorithm

RAND-SELECT(A, p, q, i) i-th smallest of A[p . . q] (p q) [p q]
if p = q then return A[p]
r ← RAND-PARTITION(A, p, q)
k ← + 1 k k(A[])k ← r – p + 1 k = rank(A[r])
if i = k then return A[r]
if i < kif i < k

then return RAND-SELECT(A, p, r – 1, i)
else return RAND-SELECT(A, r + 1, q, i – k)

≤ A[r] ≥ A[r]
k

10/3/12 CMPS 2200 Intro. to Algorithms 3

rp q

ExampleExample

Select the i = 7th smallest:

i = 76 10 13 5 8 3 2 11

Select the i = 7th smallest:

pivot

P i i
k = 42 5 3 6 8 13 10 11

Partition:

Select the 7 – 4 = 3rd smallest recursively.

10/3/12 CMPS 2200 Intro. to Algorithms 4

Select the 7 4 3rd smallest recursively.

Intuition for analysisIntuition for analysis
(All our analyses today assume that all elements

Lucky:

(y y
are distinct.)

for RAND-PARTITION
Lucky:

101log 3/4 == nn
CASE 3

T(n) = T(3n/4) + dn
= Θ(n) CASE 3 Θ(n)

Unlucky:
T(n) = T(n – 1) + dn arithmetic seriesT(n) T(n 1) + dn

= Θ(n2)
arithmetic series

Worse than sorting!
10/3/12 CMPS 2200 Intro. to Algorithms 5

Worse than sorting!

Analysis of expected timeAnalysis of expected time

• Call a pivot good if its rank lies in [n/4,3n/4].Call a pivot good if its rank lies in [n/4,3n/4].
• How many good pivots are there?
⇒ A random pivot has 50% chance of being good.

n/2
p g g

• Let T(n,s) be the runtime random variable
time to reduce array size to ≤ 3/4n

T(n,s) ≤ T(3n/4,s) + X(s)⋅dn
time to reduce array size to ≤ 3/4n

#times it takes to
find a good pivot

Runtime of partition

10/3/12 CMPS 2200 Intro. to Algorithms 6

Analysis of expected timeAnalysis of expected time
Lemma: A fair coin needs to be tossed an expected
number of 2 times until the first “heads” is seen.

P f L t E(X) b th t d b f tProof: Let E(X) be the expected number of tosses
until the first “heads”is seen.
• Need at least one toss if it’s “heads” we are doneNeed at least one toss, if it s heads we are done.
• If it’s “tails” we need to repeat (probability ½).

⇒ E(X) = 1 + ½ E(X)() ()
⇒ E(X) = 2

10/3/12 CMPS 2200 Intro. to Algorithms 7

Analysis of expected timeAnalysis of expected time
time to reduce array size to ≤ 3/4n

T(n,s) ≤ T(3n/4,s) + X(s)⋅dn

#times it takes to
find a good pivot

Runtime of partition

⇒ E(T(n,s)) ≤ E(T(3n/4,s)) + E(X(s)⋅dn)
⇒ E(T(n,s)) ≤ E(T(3n/4,s)) + E(X(s))⋅dn

Linearity of
expectation((,)) ((,)) (())

⇒ E(T(n,s)) ≤ E(T(3n/4,s)) + 2⋅dn
⇒ Texp(n) ≤ Texp(3n/4) + Θ(n)

Lemma

10/3/12 CMPS 2200 Intro. to Algorithms 8

p p
⇒ Texp(n) ∈ Θ(n)

Summary of randomized
d i i l iorder-statistic selection

• Works fast: linear expected time• Works fast: linear expected time.
• Excellent algorithm in practice.
• But the worst case is very bad: Θ(n2)• But, the worst case is very bad: Θ(n).

Q. Is there an algorithm that runs in linear
i i h ?time in the worst case?

A. Yes, due to Blum, Floyd, Pratt, Rivest,
d T j [1973]

IDEA: Generate a good pivot recursively.

and Tarjan [1973].

10/3/12 CMPS 2200 Intro. to Algorithms 9

g p y

Worst-case linear-time order
i istatistics

SELECT(i, n)
1. Divide the n elements into groups of 5. Find

the median of each 5-element group by rote.
2 Recursively SELECT the median x of the ⎣n/5⎦2. Recursively SELECT the median x of the ⎣n/5⎦

group medians to be the pivot.
3. Partition around the pivot x. Let k = rank(x).

if i = k then return x
elseif i < k

then recursively SELECT the ith

p ()
4.

Same as
RANDthen recursively SELECT the ith

smallest element in the lower part
else recursively SELECT the (i–k)th

RAND-
SELECT

10/3/12 CMPS 2200 Intro. to Algorithms 10

smallest element in the upper part

Choosing the pivotChoosing the pivot

10/3/12 CMPS 2200 Intro. to Algorithms 11

Choosing the pivotChoosing the pivot

1 Divide the n elements into groups of 51. Divide the n elements into groups of 5.

10/3/12 CMPS 2200 Intro. to Algorithms 12

Choosing the pivotChoosing the pivot

lesser1 Divide the n elements into groups of 5 Find lesser1. Divide the n elements into groups of 5. Find
the median of each 5-element group by rote.

10/3/12 CMPS 2200 Intro. to Algorithms 13

greater

Choosing the pivotChoosing the pivot

x

lesser1 Divide the n elements into groups of 5 Find lesser1. Divide the n elements into groups of 5. Find
the median of each 5-element group by rote.

2. Recursively SELECT the median x of the ⎣n/5⎦

10/3/12 CMPS 2200 Intro. to Algorithms 14

greater
y

group medians to be the pivot.

Developing the recurrenceDeveloping the recurrence
SELECT(i, n)T(n) (,)
1. Divide the n elements into groups of 5. Find

the median of each 5-element group by rote.
2 R i l S h di f h ⎣ /5⎦

()

Θ(n)
2. Recursively SELECT the median x of the ⎣n/5⎦

group medians to be the pivot.
3 Partition around the pivot x Let k = rank(x)

T(n/5)
Θ(n)

if i = k then return x
elseif i < k

h i l S h i h

3. Partition around the pivot x. Let k rank(x).
4.

Θ(n)

then recursively SELECT the ith
smallest element in the lower part

else recursively SELECT the (i–k)th
T()?

10/3/12 CMPS 2200 Intro. to Algorithms 15

y ()
smallest element in the upper part

Analysis (Assume all elements are distinct)Analysis (Assume all elements are distinct.)

x

lesserAt least half the group medians are ≤ x which lesserAt least half the group medians are ≤ x, which
is at least ⎣ ⎣n/5⎦ /2⎦ = ⎣n/10⎦ group medians.

10/3/12 CMPS 2200 Intro. to Algorithms 16

greater

Analysis (Assume all elements are distinct)Analysis (Assume all elements are distinct.)

x

lesserAt least half the group medians are ≤ x which lesserAt least half the group medians are ≤ x, which
is at least ⎣ ⎣n/5⎦ /2⎦ = ⎣n/10⎦ group medians.
• Therefore, at least 3 ⎣n/10⎦ elements are ≤ x.

10/3/12 CMPS 2200 Intro. to Algorithms 17

greater

Analysis (Assume all elements are distinct)Analysis (Assume all elements are distinct.)

x

lesserAt least half the group medians are ≤ x which lesserAt least half the group medians are ≤ x, which
is at least ⎣ ⎣n/5⎦ /2⎦ = ⎣n/10⎦ group medians.
• Therefore, at least 3 ⎣n/10⎦ elements are ≤ x.

10/3/12 CMPS 2200 Intro. to Algorithms 18

greater• Similarly, at least 3 ⎣n/10⎦ elements are ≥ x.

Analysis (Assume all elements are distinct)Analysis (Assume all elements are distinct.)

Need “at most” for worst-case runtime

• At least 3 ⎣n/10⎦ elements are ≤ x
⇒ at most n-3 ⎣n/10⎦ elements are ≥ x⇒ at most n 3 ⎣n/10⎦ elements are ≥ x

• At least 3 ⎣n/10⎦ elements are ≥ x
⇒ at most n-3 ⎣n/10⎦ elements are ≤ x⇒ at most n 3 ⎣n/10⎦ elements are ≤ x

• The recursive call to SELECT in Step 4 is
executed recursively on n-3 ⎣n/10⎦ elementsexecuted recursively on n-3 ⎣n/10⎦ elements.

10/3/12 CMPS 2200 Intro. to Algorithms 19

Analysis (Assume all elements are distinct)Analysis (Assume all elements are distinct.)

• Use fact that ⎣a/b⎦ ≥ ((a-(b-1))/b (page 51)
• n 3 ⎣n/10⎦ ≤ n 3·(n 9)/10 = (10n 3n +27)/10• n-3 ⎣n/10⎦ ≤ n-3·(n-9)/10 = (10n -3n +27)/10

≤ 7n/10 + 3
Th i ll t SELECT i St 4 i• The recursive call to SELECT in Step 4 is
executed recursively on at most 7n/10+3
elementselements.

10/3/12 CMPS 2200 Intro. to Algorithms 20

Developing the recurrenceDeveloping the recurrence
SELECT(i, n)T(n) (,)
1. Divide the n elements into groups of 5. Find

the median of each 5-element group by rote.
2 R i l S h di f h ⎣ /5⎦

()

Θ(n)
2. Recursively SELECT the median x of the ⎣n/5⎦

group medians to be the pivot.
3 Partition around the pivot x Let k = rank(x)

T(n/5)
Θ(n)

if i = k then return x
elseif i < k

h i l S h i h

3. Partition around the pivot x. Let k rank(x).
4.

Θ(n)

then recursively SELECT the ith
smallest element in the lower part

else recursively SELECT the (i–k)th
T(7n/10

+3)

10/3/12 CMPS 2200 Intro. to Algorithms 21

y ()
smallest element in the upper part

Solving the recurrenceSolving the recurrence
dnnTnTnT +⎟

⎠
⎞

⎜
⎝
⎛ ++⎟

⎠
⎞

⎜
⎝
⎛= 3

10
7

5
1)(

for Θ(n)

⎟
⎠

⎜
⎝

⎟
⎠

⎜
⎝ 105

)(

)337()31()(+−++−≤ dnncncnTInduction:

3
10
9

)
10

()
5

()(

+−≤ dnccn
T(n) ≤ c(n - 3)

10
1)3(

10

+−−= dncnnc

Technical trick. This
shows that T(n)∈ O(n)

if c is chosen large enough e g c=10d
)3(

10
−≤ nc ,

10/3/12 CMPS 2200 Intro. to Algorithms 22

if c is chosen large enough, e.g., c=10d

ConclusionsConclusions
• Since the work at each level of recursion is

basically a constant fraction (9/10) smaller,
the work per level is a geometric series
dominated by the linear work at the root.

• In practice, this algorithm runs slowly,
because the constant in front of n is large.

• The randomized algorithm is far more g
practical.

Exercise: Try to divide into groups of 3 or 7
10/3/12 CMPS 2200 Intro. to Algorithms 23

Exercise: Try to divide into groups of 3 or 7.

