

CMPS 2200 – Fall 2012

Order Statistics

Carola Wenk

Slides courtesy of Charles Leiserson with small changes by Carola Wenk

Order statistics

Select the *i*th smallest of *n* elements (the element with *rank i*).

- *i* = 1: *minimum*;
- *i* = *n*: *maximum*;
- $i = \lfloor (n+1)/2 \rfloor$ or $\lceil (n+1)/2 \rceil$: *median*.

Naive algorithm: Sort and index *i*th element. Worst-case running time = $\Theta(n \log n + 1)$ = $\Theta(n \log n)$, using merge sort (*not* quicksort).

Randomized divide-andconquer algorithm

RAND-SELECT(A, p, q, i) \triangleright *i*-th smallest of A[p . . q] if p = q then return A[p] $r \leftarrow \text{RAND-PARTITION}(A, p, q)$

- $\triangleright k = \operatorname{rank}(A[r])$ $k \leftarrow r - p + 1$
- if i = k then return A[r]
- if i < k

then return RAND-SELECT(A, p, r-1, i) else return RAND-SELECT(A, r + 1, q, i - k)

Example

Select the i = 7th smallest:

Partition:

2 5 3 6 8 13 10 11
$$k = 4$$

Select the 7 – 4 = 3rd smallest recursively

Intuition for analysis

(All our analyses today assume that all elements are distinct.) Lucky:

T(n) = T(3n/4) + dn $= \Theta(n)$

Unlucky: T(n) - T(n-1) + dn $= \Theta(n^2)$

arithmetic series

 $n^{\log_{4/3} 1} = n^0 = 1$

CASE 3

Analysis of expected time

- Call a pivot *good* if its rank lies in [n/4, 3n/4].
- How many good pivots are there? n/2 \Rightarrow A random pivot has 50% chance of being good.
- Let T(n,s) be the runtime random variable

Analysis of expected time

Lemma: A fair coin needs to be tossed an expected number of 2 times until the first "heads" is seen.

Proof: Let E(X) be the expected number of tosses until the first "heads" is seen.

- Need at least one toss, if it's "heads" we are done.
- If it's "tails" we need to repeat (probability $\frac{1}{2}$).
 - $\Rightarrow E(X) = 1 + \frac{1}{2} E(X)$ $\Rightarrow E(X) = 2$

Analysis of expected time

 $\Rightarrow E(T(n,s)) \le E(T(3n/4,s)) + E(X(s) \cdot dn)$ $\Rightarrow E(T(n,s)) \le E(T(3n/4,s)) + E(X(s)) \cdot dn$ $\Rightarrow E(T(n,s)) \le E(T(3n/4,s)) + 2 \cdot dn$ $\Rightarrow T_{exp}(n) \le T_{exp}(3n/4) + \Theta(n)$ $\Rightarrow T_{exp}(n) \in \Theta(n)$ Linearity of expectation

Lemma

Summary of randomized order-statistic selection

- Works fast: linear expected time.
- Excellent algorithm in practice.
- But, the worst case is *very* bad: $\Theta(n^2)$.
- *Q*. Is there an algorithm that runs in linear time in the worst case?
- *A.* Yes, due to Blum, Floyd, Pratt, Rivest, and Tarjan [1973].

IDEA: Generate a good pivot recursively.

Worst-case linear-time order statistics

Select(i, n)

- 1. Divide the *n* elements into groups of 5. Find the median of each 5-element group by rote.
- 2. Recursively SELECT the median x of the $\lfloor n/5 \rfloor$ group medians to be the pivot.
- 3. Partition around the pivot *x*. Let $k = \operatorname{rank}(x)$.
- 4. if i = k then return x elseif i < k

then recursively SELECT the *i*th smallest element in the lower part

else recursively SELECT the (i-k)th smallest element in the upper part Same as

RAND-

SELECT

1. Divide the *n* elements into groups of 5.

1. Divide the *n* elements into groups of 5. Find the median of each 5-element group by rote.

- 1. Divide the *n* elements into groups of 5. Find the median of each 5-element group by rote.
- 2. Recursively SELECT the median x of the $\lfloor n/5 \rfloor$ group medians to be the pivot.

lesser

Developing the recurrence

At least half the group medians are $\leq x$, which is at least $\lfloor \frac{n}{5} \rfloor / 2 \rfloor = \lfloor \frac{n}{10} \rfloor$ group medians.

At least half the group medians are $\leq x$, which is at least $\lfloor n/5 \rfloor / 2 \rfloor = \lfloor n/10 \rfloor$ group medians. • Therefore, at least $3 \lfloor n/10 \rfloor$ elements are $\leq x$.

At least half the group medians are $\leq x$, which is at least $\lfloor n/5 \rfloor / 2 \rfloor = \lfloor n/10 \rfloor$ group medians.

- Therefore, at least $3\lfloor n/10 \rfloor$ elements are $\leq x$.
- Similarly, at least $3\lfloor n/10 \rfloor$ elements are $\geq x$.

10/3/12

lesser

Need "at most" for worst-case runtime

- At least $3\lfloor n/10 \rfloor$ elements are $\leq x$ \Rightarrow at most $n-3\lfloor n/10 \rfloor$ elements are $\geq x$
- At least $3 \lfloor n/10 \rfloor$ elements are $\geq x$ \Rightarrow at most $n-3 \lfloor n/10 \rfloor$ elements are $\leq x$
- The recursive call to SELECT in Step 4 is executed recursively on $n-3\lfloor n/10 \rfloor$ elements.

- Use fact that $\lfloor a/b \rfloor \ge ((a-(b-1))/b)$ (page 51)
- $n-3\lfloor n/10 \rfloor \le n-3 \cdot (n-9)/10 = (10n 3n + 27)/10 \le 7n/10 + 3$
- The recursive call to SELECT in Step 4 is executed recursively on at most 7n/10+3 elements.

Developing the recurrence

if *c* is chosen large enough, e.g., c=10d

Conclusions

- Since the work at each level of recursion is basically a constant fraction (9/10) smaller, the work per level is a geometric series dominated by the linear work at the root.
- In practice, this algorithm runs slowly, because the constant in front of *n* is large.
- The randomized algorithm is far more practical.

Exercise: *Try to divide into groups of 3 or 7.*