CMPS 2200 - Fall 2012

Order Statistics

Carola Wenk

Slides courtesy of Charles Leiserson with small changes by Carola Wenk

Order statistics

Select the i th smallest of n elements (the element with rank i).

- $i=1$: minimum;
- $i=n$: maximum;
- $i=\lfloor(n+1) / 2\rfloor$ or $\lceil(n+1) / 2\rceil$: median.

Naive algorithm: Sort and index i th element.
Worst-case running time $=\Theta(n \log n+1)$

$$
=\Theta(n \log n)
$$

using merge sort (not quicksort).

Randomized divide-andconquer algorithm

Rand-Select $(A, p, q, i) \quad \triangleright i$-th smallest of $A[p \ldots q]$
if $p=q$ then return $A[p]$
$r \leftarrow$ Rand-Partition (A, p, q)
$k \leftarrow r-p+1 \quad \triangleright k=\operatorname{rank}(A[r])$
if $i=k$ then return $A[r]$
if $i<k$
then return Rand-Select($A, p, r-1, i)$ else return Rand-Select $(A, r+1, q, i-k)$

Example

Select the $i=7$ th smallest:

Partition:

Select the 7-4 = 3rd smallest recursively.

Intuition for analysis

(All our analyses today assume that all elements are distinct.)
Lucky:

for Rand-Partition

$$
\begin{aligned}
T(n) & =T(3 n / 4)+d n \\
& =\Theta(n)
\end{aligned}
$$

$$
n^{\log _{4 / 3} 1}=n^{0}=1
$$

Case 3
Unlucky:

$$
\begin{aligned}
T(n) & =T(n-1)+d n \\
& =\Theta\left(n^{2}\right)
\end{aligned}
$$

Worse than sorting!

Analysis of expected time

- Call a pivot good if its rank lies in [n/4,3n/4].
- How many good pivots are there? $n / 2$ \Rightarrow A random pivot has 50% chance of being good.
- Let $T(n, s)$ be the runtime random variable

Analysis of expected time

Lemma: A fair coin needs to be tossed an expected number of 2 times until the first "heads" is seen.

Proof: Let $E(X)$ be the expected number of tosses until the first "heads"is seen.

- Need at least one toss, if it's "heads" we are done.
- If it's "tails" we need to repeat (probability $1 / 2$).

$$
\begin{aligned}
& \Rightarrow E(X)=1+1 / 2 E(X) \\
& \Rightarrow E(X)=2
\end{aligned}
$$

Analysis of expected time

$$
\begin{aligned}
& \Rightarrow E(T(n, s)) \leq E(T(3 n / 4, s))+E(\mathrm{X}(\mathrm{~s}) \cdot d n) \\
& \Rightarrow E(T(n, s)) \leq E(T(3 n / 4, s))+E(\mathrm{X}(\mathrm{~s})) \cdot d n \\
& \Rightarrow E(T(n, s)) \leq E(T(3 n / 4, s))+2 \cdot d n \\
& \Rightarrow T_{\text {exp }}(n) \leq T_{\text {exp }}(3 n / 4)+\Theta(n) \\
& \Rightarrow T_{\text {exp }}(n) \in \Theta(n)
\end{aligned}
$$

expectation

Lemma

Summary of randomized order-statistic selection

- Works fast: linear expected time.
- Excellent algorithm in practice.
- But, the worst case is very bad: $\Theta\left(n^{2}\right)$.
Q. Is there an algorithm that runs in linear time in the worst case?
A. Yes, due to Blum, Floyd, Pratt, Rivest, and Tarjan [1973].

Idea: Generate a good pivot recursively.

Worst-case linear-time order statistics

Select(i, n)

1. Divide the n elements into groups of 5 . Find the median of each 5 -element group by rote.
2. Recursively Select the median x of the $\lfloor n / 5\rfloor$ group medians to be the pivot.
3. Partition around the pivot x. Let $k=\operatorname{rank}(x)$.
4. if $i=k$ then return x
elseif $i<k$
then recursively Select the i th smallest element in the lower part

Same as
Rand-
Select
else recursively Select the $(i-k)$ th smallest element in the upper part

Choosing the pivot

| \bullet |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \bullet |
| \bullet |
| \bullet |

Choosing the pivot

1. Divide the n elements into groups of 5 .

Choosing the pivot

1. Divide the n elements into groups of 5 . Find lesser the median of each 5-element group by rote.

Choosing the pivot

1. Divide the n elements into groups of 5 . Find lesser the median of each 5 -element group by rote.
2. Recursively Select the median x of the $\lfloor n / 5\rfloor$ group medians to be the pivot.

Developing the recurrence

$T(n) \quad \operatorname{Select}(i, n)$
$\Theta(n)\left\{\begin{array}{l}\text { 1. Divide the } n \text { elements into groups of } 5 \text {. Find } \\ \text { the median of each 5-element group by rote. }\end{array}\right.$
$T(n / 5)\left\{\begin{array}{l}\text { 2. Recursively Select the median } x \text { of the }\lfloor n / 5\rfloor \\ \text { group medians to be the pivot. }\end{array}\right.$
4. if $i=k$ then return x
elseif $i<k$
then recursively Select the i th smallest element in the lower part
else recursively Select the $(i-k)$ th smallest element in the upper part

Analysis (Assume all elements are distinct.)

At least half the group medians are $\leq x$, which is at least $\lfloor\lfloor n / 5\rfloor / 2\rfloor=\lfloor n / 10\rfloor$ group medians.

greater

Analysis (Assume all elements are distinct.)

At least half the group medians are $\leq x$, which is at least $\lfloor\lfloor n / 5\rfloor / 2\rfloor=\lfloor n / 10\rfloor$ group medians. - Therefore, at least $3\lfloor n / 10\rfloor$ elements are $\leq x$. lesser

greater

Analysis (Assume all elements are distinct.)

At least half the group medians are $\leq x$, which lesser is at least $\lfloor\lfloor n / 5\rfloor / 2\rfloor=\lfloor n / 10\rfloor$ group medians.

- Therefore, at least $3\lfloor n / 10\rfloor$ elements are $\leq x$.
- Similarly, at least 3โn/10」 elements are $\geq x$.

Analysis (Assume all elements are distinct.)

Need "at most" for worst-case runtime

- At least $3\lfloor n / 10\rfloor$ elements are $\leq x$ \Rightarrow at most $n-3\lfloor n / 10\rfloor$ elements are $\geq x$
- At least $3\lfloor n / 10\rfloor$ elements are $\geq x$ \Rightarrow at most $n-3\lfloor n / 10\rfloor$ elements are $\leq x$
- The recursive call to Select in Step 4 is executed recursively on $n-3\lfloor n / 10\rfloor$ elements.

Analysis (Assume all elements are distinct.)

- Use fact that $\lfloor a / b\rfloor \geq((a-(b-1)) / b \quad$ (page 51)
- $n-3\lfloor n / 10\rfloor \leq n-3 \cdot(n-9) / 10=(10 n-3 n+27) / 10$ $\leq 7 n / 10+3$
- The recursive call to Select in Step 4 is executed recursively on at most $7 n / 10+3$ elements.

Developing the recurrence

$T(n) \quad \operatorname{Select}(i, n)$
$\Theta(n)\left\{\begin{array}{l}\text { 1. Divide the } n \text { elements into groups of } 5 \text {. Find } \\ \text { the median of each 5-element group by rote. }\end{array}\right.$ $T(n / 5)\left\{\begin{array}{l}\text { 2. Recursively Select the median } x \text { of the }\lfloor n / 5\rfloor\end{array}\right.$ group medians to be the pivot.
$\Theta(n)$ 3. Partition around the pivot x. Let $k=\operatorname{rank}(x)$.

Solving the recurrence

$$
T(n)=T\left(\frac{1}{5} n\right)+T\left(\frac{7}{10} n+3\right)+d n-
$$

Induction:
$T(n) \leq c(n-3)$

$$
T(n) \leq c\left(\frac{1}{5} n-3\right)+c\left(\frac{7}{10} n+3-3\right)+d n
$$

Technical trick. This

$$
\begin{aligned}
& \leq \frac{9}{10} c n-3 c+d n \\
& =c(n-3)-\frac{1}{10} c n+d n \\
& \leq c(n-3),
\end{aligned}
$$

if c is chosen large enough, e.g., $c=10 d$

Conclusions

- Since the work at each level of recursion is basically a constant fraction (9/10) smaller, the work per level is a geometric series dominated by the linear work at the root.
- In practice, this algorithm runs slowly, because the constant in front of n is large.
- The randomized algorithm is far more practical.

Exercise: Try to divide into groups of 3 or 7.

