CMPS 2200 Introduction to Algorithms - Fall 12

4. Homework
 Due 10/9/12 in the lab

1. Best case for quicksort (5 points)

Let "Deterministic Quicksort" be the non-randomized Quicksort which takes the first element as a pivot, using the partition routine that we covered in class on slide 4 of the quicksort slides.
In the best case the pivot always splits the array in half, for all recursive calls of Deterministic Quicksort. Give a sequence of 3 distinct numbers, a sequence of 7 distinct numbers, and a sequence of 15 distinct numbers that cause this best-case behavior. (For the sequence of 15 numbers the first two recursive calls should be on sequences of 7 numbers each, and the next recursive calls on sequences of 3 numbers).

2. Decision tree (5 points)

Below is the code for Bubble Sort:

```
void bubbleSort(int A[1..n]){
    for(int i=1; i <= n; i++)
        for(int j=n; j >= i+1; j--)
            if(A[j]<A[j-1])
                swap(A[j],A[j-1]);
}
```

Draw the decision tree for Bubble Sort for an array $A[1 . .3]$ of $n=3$ elements. Annotate the decision tree with comments indicating the part of the algorithm that a comparison belongs to.

3. Lower bound for comparison-based searching (5 points)

Consider the problem of searching for a given key in a sorted array of n numbers. Use a decision tree to show a lower bound of $\Omega(\log n)$ for any comparison-based search algorithm. (Hint: The decision tree needs to represent the output of the search algorithm in its leaves. What should be stored in the leaves?)

4. Close to the median (5 points)

Let $A[1 . . n]$ be an unsorted array of n numbers, and let k be a positive integer $k \leq n$. Assume both n and k are odd. The task is to design an algorithm that outputs the k numbers that are the closest to the median. These are the numbers whose k rank is closest to $n / 2$. For example, if $A=[2,1,7,4,6,5,8]$ and $k=3$ then the output should be the numbers $5,4,6$. Note that the numbers do not necessarily have to be output in sorted order.)
Give pseudocode for such an algorithm that runs in $O(n)$ time (either expected, or worst-case). (Hint: Use the Select algorithm.)

Practice Problems

(Not required for homework credit.)

1. Quicksort decision tree

The decision tree on the slides in class was for insertion sort of three distinct elements. Draw the decision tree for quicksort of an array $A[1 . .3]$ of three elements. Use the deterministic quicksort and the partition routine described on the slides. Annotate the decision tree with the current state of the array.

2. Median computation

Suppose arrays A and B are both sorted and contain n elements each. Give a divide-and-conquer algorithm to find the median of $A \cup B$ in $O(\log n)$ time. (Describe it either in words or as pseudo-code; whatever you prefer). Argue shortly why the runtime is $O(\log n)$.

