
CMPS 2200 Introduction to Algorithms – Fall 12

9/17/12

2. Homework
Due 9/25/12 in the lab

1. Recursion tree (8 points)
For the following recurrences use the recursion tree method to find a good guess of
what they could solve to asymptotically (i.e., in big-Oh terms). Assume T (1) = 1.

You may need to use that a(b
c) = ab·c = a(c

b).

(a) T (n) = 3T (n3 ) + n for n ≥ 2

(b) T (n) = 4T (n2 ) + n3 for n ≥ 2

2. Induction (4 points)
Let T (1) = 2 and T (n) = 4T (n/2) + n3 for n ≥ 2. Use induction to prove that
T (n) = 2n3 for all n ≥ 1.

3. Strassen’s Algorithm (4 points)
Apply Strassen’s algorithm to compute

1 0 2 1
4 1 1 0
0 1 3 0
5 0 2 1

 .


0 1 0 1
2 1 0 4
2 0 1 1
1 3 5 0


The recursion should exit with the base case n = 1, i.e., 2 × 2 matrices should
recursively be computed using Strassen’s algorithm. In order to save you some
work, you may assume that the following is a partial solution and you only have
to fill in the missing values by using Strassen’s algorithm:

5 4
4 5
8 1 3 7
5 8 7 7


4. Divide and Conquer (6 points)

Let A[1..n] be an array of n numbers. A number in A is a majority element if A
contains this number at least bn/2c+ 1 times.

Write a divide-and-conquer algorithm that determines whether a given array A[1..n]
contains a majority element, and if so, returns it. Your algorithm should run in
O(n log n) time. You are not allowed to sort the array.

Set up and solve a recurrence relation for the runtime of your algorithm.

Hint: Start by applying the generic divide-and-conquer approach. Try to divide by
two. Then try to combine the results. From the given runtime you should be able
to guess how much time you are allowed to spend for dividing and combining.

Flip over to back page =⇒



Practice Problems
(Not required for homework credit.)

1. Induction
Prove by weak induction on n that the following equality holds for constant a 6= 1
and all n ≥ 0:

n∑
i=0

ai =
an+1 − 1

a− 1

2. 3-way mergesort

int 3wayMergesort(int i, int j, int[] A){

// Sort A[i..j]

if(j-i<=1)

return;

l = (j-i)/3;

3wayMergesort(i,i+l, A);

3wayMergesort(i+l+1,i+2*l,A);

3wayMergesort(i+2*l+1,j,A);

merge(i,i+l+1,i+2*l+1); // Merges all three sub-arrays in linear time

}

The first call is 3wayMergesort(1,n,A) to sort the array A[1..n].

Set up a runtime recurrence (T (n) = ...) for 3-way mergesort above. Do not
forget the base case.

3. Recursion tree
For the recurrence

T (n) = 3T (
n

2
) + n2 for n ≥ 2

use the recursion tree method to find a good guess of what it could solve to asymp-
totically (i.e., in big-Oh terms). Assume T (1) = 1. You may need to use that

a(b
c) = ab·c = a(c

b).

4. Binary Integer Multiplication
Let x = 101101102 and y = 110010102. Compute x · y using the fast recursive
multiplication algorithm.

5. Compute Minimum
Let A be an unsorted array of n numbers. Develop a divide-and-conquer algorithm
to compute the minimum in A.


