9/5/12

1. Homework Due 9/18/12 in the lab

1. Big-Oh ranking (10 points)

Rank the following ten functions by order of growth, i.e., find an arrangement f_1, f_2, \ldots of the functions satisfying $f_1 \in O(f_2), f_2 \in O(f_3), \ldots$. Partition your list into equivalence classes such that f and g are in the same class if and only if $f \in \Theta(g)$. For every two functions f_i, f_j that are adjacent in your ordering, prove shortly why $f_i \in O(f_j)$ holds. And if f and g are in the same class, prove that $f \in \Theta(g)$.

$$\log n$$
, $\sqrt[3]{n}$, 2^{2n} , $\log \log n$, n^2 , $n \log n$, 2^n , \sqrt{n} , n , 2^{n+1} ,

Bear in mind that in some cases it might be useful to show $f(n) \in o(g(n))$, since $o(g(n)) \subset O(g(n))$. If you try to show that $f(n) \in o(g(n))$, then it might be useful to apply the rule of l'Hôpital which states that

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{f'(n)}{g'(n)}$$

if the limits exist; where f and g' are the derivatives of f and g, respectively.

2. O, Ω, Θ (8 points)

Show using the definitions of big-Oh, Ω , and Θ :

- (a) (4 points) $7n^4 + 2n^2 8n \in \Theta(n^4)$
- (b) (4 points) If $f_1(n) \in O(g_1(n))$ and $f_2(n) \in O(g_2(n))$, prove that

$$f_1(n) + f_2(n) \in O(\max(g_1(n), g_2(n)))$$

Is the same true for $O(\min(g_1(n), g_2(n)))$? Explain your answer.

3. Code snippet (6 points)

Give the Θ -runtime for the code snippet below, depending on n. Justify your answer.

```
for(i=1; i<=n; i=i*3)
for(j=n; j>=1; j=j/3)
for(l=2; l<=n; l=l*l*l)
print(" ");</pre>
```