CMPS 2200 Introduction to Algorithms - Fall 12

1. Homework

Due $\mathbf{9 / 1 8} / 12$ in the lab

1. Big-Oh ranking (10 points)

Rank the following ten functions by order of growth, i.e., find an arrangement f_{1}, f_{2}, \ldots of the functions satisfying $f_{1} \in O\left(f_{2}\right), f_{2} \in O\left(f_{3}\right), \ldots$. Partition your list into equivalence classes such that f and g are in the same class if and only if $f \in \Theta(g)$. For every two functions f_{i}, f_{j} that are adjacent in your ordering, prove shortly why $f_{i} \in O\left(f_{j}\right)$ holds. And if f and g are in the same class, prove that $f \in \Theta(g)$.

$$
\log n, \sqrt[3]{n}, 2^{2 n}, \log \log n, n^{2}, n \log n, 2^{n}, \sqrt{n}, n, 2^{n+1}
$$

Bear in mind that in some cases it might be useful to show $f(n) \in o(g(n))$, since $o(g(n)) \subset O(g(n))$. If you try to show that $f(n) \in o(g(n))$, then it might be useful to apply the rule of l'Hôpital which states that

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\lim _{n \rightarrow \infty} \frac{f^{\prime}(n)}{g^{\prime}(n)}
$$

if the limits exist; where f and g^{\prime} are the derivatives of f and g, respectively.

2. O, Ω, Θ (8 points)

Show using the definitions of big-Oh, Ω, and Θ :
(a) (4 points) $7 n^{4}+2 n^{2}-8 n \in \Theta\left(n^{4}\right)$
(b) (4 points) If $f_{1}(n) \in O\left(g_{1}(n)\right)$ and $f_{2}(n) \in O\left(g_{2}(n)\right)$, prove that

$$
f_{1}(n)+f_{2}(n) \in O\left(\max \left(g_{1}(n), g_{2}(n)\right)\right) .
$$

Is the same true for $O\left(\min \left(g_{1}(n), g_{2}(n)\right)\right)$? Explain your answer.

3. Code snippet (6 points)

Give the Θ-runtime for the code snippet below, depending on n. Justify your answer.

```
for(i=1; i<=n; i=i*3)
    for(j=n; j>=1; j=j/3)
        for(l=2; l<=n; l=l*l*l)
            print(" ");
```

