
CMPS 1500 Introduction to Computer Science I – Spring 2019

Lab 6
Due Wednesday 3/27/19 at 11:59 p.m. on Canvas and Zybook

Please follow the usual lab guidelines (file naming rules, honor code, comment re-
quirements). New additional lab rules:

• The code will be graded both on functionality and on style (meaningful variable
names, presence of comments and docstrings, absence of commented-out code,
etc). Perfectly running programs will lose points for lack of comments, presence
of commented-out code, etc

• Your code has to run. Any code that immediately crashes will receive 0 points.

• Whenever you submit code on Canvas, please submit the entire code (function and
main part), so that we can run the code.

Read the entire assignment before starting your work in order to plan your
time.

0. Sort verification, lab6pr0.py, Zybook

(a) (Warm-up) Write a program that checks whether a list of numbers is sorted
in increasing order and prints True if the list is sorted in increasing order,
and False otherwise. Test your program for several lists. If a list contains
duplicates of a number, they are considered in increasing order if they appear
next to each other. So, 1, 2, 2, 2, 3, 8, 9, 9, 9, 12 are considered to
be in increasing order.

(b) Write a function is sorted(lst) that takes as input a list of numbers, and
returns True if the list is sorted in increasing order, and False otherwise.
Provide doctests that test your function for several inputs. (It’s fantastic if
you can make your function recursive. But it is ok to use loops as well).

(c) Write a function is file sorted(filename). This function takes as input
a name of the input file containing a list of integer numbers, one number
per line, and returns True if the list is sorted in increasing order, and False

otherwise. Test your function with several inputs.

Important: Remember to convert string values to integers before testing.
Otherwise your numbers will be sorted lexicographically, for example, numbers
[1,2,11,12] will be sorted [1,11,12,2], which is not the right order for
integers.

1. Sort verification, code analysis, code style, lab6pr1.py, Canvas

(a) Now add the main part to the program from problem 0. It should prompt
the user for an input file name, and it should output a user-friendly message
with the result, as follows:



>>>

Please enter file name: input.txt

Looks like input.txt needs to be sorted

or

>>>

Please enter file name: inputsorted.txt

Congratulations! The file inputsorted.txt is nicely sorted!

(b) For each code line in the main part of your file, add a comment describing
the asymptotic running time of that line of code in terms of n, the number
of entries in the input file. On the last line in your file, add a comment with
the total big-Oh running time of this program, and a brief justification.

2. Sort usage, lab6pr2.py, Zybook

Carefully study the file sortingalgos.py that includes implementations of
sorting algorithms provided with this lab.

(a) Write a function use mergesort(inputfile, outputfile). This function
takes as input a name of the input file containing a list of integer numbers,
one number per line, and the output file name. This function should read-in
numbers from the file, sort them using the provided mergesort function, and
output the sorted numbers to the output file, one number per line.

Important: Remember to convert string values to integers before testing.
Otherwise your numbers will be sorted lexicographically, for example, numbers
[1,2,11,12] will be sorted [1,11,12,2], which is not the right order for
integers.

(b) Write a function use selectionsort(inputfile, outputfile). This func-
tion takes as input a name of the input file containing a list of integer numbers,
one number per line, and the output file name. This function should read-in
numbers from the file, sort them using the provided selection sort function,
and output the sorted numbers to the output file, one number per line.

(c) Insert

import random

random.seed(0)

into your code file. A call to random.randrange(a) generates a random
number between 0 and a-1, inclusive.

Now write a function generate nums(filename, n) that creates a file named
filename and writes to it n random numbers from 0 to 99, inclusive.

Use the generate nums() function to generate files of different size that you
would then use for testing your use mergesort() and use selectionsort().

3. Practical performance of sorting, lab6pr3.py and lab6pr3.pdf, Canvas

In class we spoke about the asymptotic runtime analysis of merge-sort and selection-
sort. In this exercise you evaluate the performance of these two algorithms in



practice. Start by carefully studying the file timeexample.py that shows how to
use the time functions to measure runtime.

(a) Modify your use mergesort() into a function called analyze mergesort(inputfile,

outputfile) that calculates and displays to the user the time (in seconds)
it took to read in the values from the input file, the time it took to sort the
values, the time it took to output the values to a file file, the total time it
took to run the program, and the total number of values that were processed.
Round the seconds value to 6 decimal digits. For example,

>>> analyze_mergesort("input10.txt", "sorted10.txt")

It took 0.008058 seconds to input 10 values from file input10.txt

It took 1.112337 seconds to sort 10 values using merge sort

It took 0.121144 seconds to output 10 sorted values to file sorted10.txt

Total time the program took is 1.241539 seconds

Your numbers will be different from mine.

(b) Similarly modify your use selectionsort() function into a function called
analyze selectionsort(inputfile, outputfile).

>>> analyze_selectionsort("input10.txt", "sorted10.txt")

It took 0.008058 seconds to input 10 values from file input10.txt

It took 1.112337 seconds to sort 10 values using selection sort

It took 0.121144 seconds to output 10 sorted values to file sorted10.txt

Total time the program took is 1.241539 seconds

(c) Now you are ready to compare merge sort and selection sort side-by-side.
First, use your generate nums() function to generate files with 10, 100,
1, 000, 10, 000, 100, 000 and 1, 000, 000 numbers. Then, run your analyze
functions from exercise 3(b) on these files. Your goal is to see how much time
selection sort and merge sort take on the same list of numbers.

(Note: in 2014 selection sort on a million numbers took 29 hours on a standard
laptop. You can use this value in your analysis if you don’t have patience
to wait until your simulation completes. It would be interesting to see the
numbers for this year, let me know if you figure it out.)

If the program takes too long to run and you stop it early, please include in
your submission an explanation with the approximate time that you waited
before you stopped the program, and also your prediction on how long the
program would actually take (based on its performance for a smaller set of
numbers).

i. First, for each of the input sizes, copy the information about the time
taken by both functions into a Word file. Clearly separate the outputs
produced by running different files. Highlight the time taken by the
sorting portion of the program.
You only need to copy the time measurements. Do not copy the numbers
that were actually sorted.

ii. In each case, state what percentage of total running time is taken by
input and output. Look at these percentages and answer - what are
these numbers telling us?



iii. Make four graphs. In the first one, plot the time taken to merge-sort the
file vs. the number of values in the input. On the second one, plot the
time taken to selection-sort the file vs. the number of values in the input.
Make sure you only use the actual sorting time, not the total time of the
program. Now, repeat these steps but plot the actual time taken by the
entire program vs. the number of values processed, one graph for merge
sort and one graph for selection sort. Add clear captions to your graphs.

You may want to Excel to produce graphs and copy them into your Word
file. You are free to use any other word processing/plotting software that
you’re familiar with.

iv. In a few sentences, interpret your graphs. What are the plots telling us?

Save your file as .pdf and submit it to Canvas.


