
CMPS 1500 Introduction to Computer Science I – Spring 2019

Lab 4
Due Wednesday 2/20/18 at 11:59 p.m.

Start early and give yourself enough time to work on this lab.

Note that code formatting requirements will apply to this lab. Part of the lab grade will
be for quality of formatting of the code. Parts of the lab will be graded by humans. The
docstring for every function you write in this lab should contain a brief explanation of the
input and the output of the function, including their types. You will be submitting problem
0 to Zybook, and problems 1 and 2 to Canvas.

In this lab, you will create a program that simulates the work of an interactive data man-
agement system. For example Gibson, the sysstem that is used to manage student information
at Tulane, likely grew from a system very similar to the one that you will implement in this lab.
The role of the database (collection of records) will be played by Python dictionary, and you
will write functions that will manipulate data in the dictionary. In our example, we will keep
a record of students and their associated majors, however, the same ideas will apply in any
real-life applications where we need to keep and update records, such as a database of stocks
and their prices, employees and their salaries at an HR office, accounts and their balances in
a bank, and so on.

0. Dictionary manipulation, lab4pr0.py

(This is a long problem and counts as double the points.)

For this exercise, start by having a predefined dictionary storing a few student names
and majors, such as:

majors = ’Harry’:’Computer Science’, ’Hermione’:’Mathematics’, ’Ron’:’English’

Place the line with your dictionary initialization at the beginning of your file.

As you can see, the name will serve as a key, and the major will be the value. For
simplicity, we’ll assume that each person will only have one major.

(a) Write a function look up(d), where d is a dictionary containing names and majors.
The function should ask the user to enter a name. If the name is in the dictionary,
it should print out the major associated with the name. If the name is not in the
dictionary, it should print ”Not found.” The function should not return anything.
Sample output of your function should look like this:

>>> look_up(majors)

Enter a name: Harry

Computer Science

>>> look_up(majors)

Enter a name: Ron

English

>>> look_up(majors)

Enter a name: Voldemort

Not found.



(b) Now write a function add(d) that asks the user to enter a name and a major.
It then adds this information as a new entry in the dictionary d. If the name
entered already exists in the dictionary, do not alter the dictionary; just print out
“A person with this name already exists in the system.” The function should not
return anything. Sample output of your function should look like this:

>>> add(majors)

Enter a name: Hagrid

Enter a major: Physics

>>> majors

{’Harry’: ’Computer Science’, ’Ron’: ’English’, ’Hagrid’: ’Physics’,

’Hermione’: ’Mathematics’}

>>> add(majors)

Enter a name: Ron

Enter a major: Art

A person with this name already exists in the system.

(c) Now write a function change(d) that allows a user to change an entry of the
dictionary d. The function should ask the user to enter a name. If the name is not
already in the dictionary, it should print, ”That name is not found.” If the name
is in the dictionary, the function should ask the user to enter a major. Then the
function should change the dictionary entry to include the new major. The function
should not return anything. Sample output of your function would look like this:

>>> change(majors)

Enter a name: Harry

Enter the new major: Biology

>>> majors

{’Ron’: ’English’, ’Hermione’: ’Mathematics’, ’Harry’: ’Biology’}

>>> change(majors)

Enter a name: Voldemort

That name is not found.

(d) Now write a function delete(d) that allows a user to delete an entry from the
dictionary d. The function should ask the user for a name. If the name is in the
dictionary, its entry should be removed. If the name is not in the dictionary, the
function should print, ”That name is not found.” The function should not return
anything. Sample output of you function should look like this:

>>> delete(majors)

Enter a name: Harry

>>> majors

{’Hermione’: ’Mathematics’, ’Ron’: ’English’}

>>> delete(majors)

Enter a name: Voldemort

That name is not found.



(e) Write a function display(d) that displays all entries in a dictionary, one name/major
pair per line, as follows:

>>> display(majors)

Hermione is a wizard in Mathematics

Harry is a wizard in Computer Science

Ron is a wizard in English

Note that a dictionary does not preserve the order of entries. Students that were
added later may appear in the beginning of the list; don’t be puzzled by that.

(f) Write a function get menu choice() that displays to the user all of the possible
choices: look up, add, change, delete, and quit. Each choice will have a number
associated with it. Then the function asks the user to make a choice. If the user
enters an invalid choice, the function should ask again for a choice. Once a valid
choice is entered, the choice should be returned. Sample output is as follows:

>>> get_menu_choice()

Majors of College Students

---------------------------

1. Look up a student’s major

2. Add a new student

3. Change a major

4. Delete a student

5. Display all students

6. Quit the program

Enter your choice: 7

Enter a valid choice: hello

Enter a valid choice: 2

2

The main part of the program has been written for you. Open the lab on Zybook
and look at the main code. It starts with an empty dictionary, majors. Now the
get menu choice function is used to ask the user for a choice. When the user makes a
choice, the corresponding function will be called to alter or access the majors dictionary.
Then the user will be prompted to enter another choice. This process continues until
the user enters the choice of quitting the program.

Develop the functions look up, add, change, delete, display, get menu choice

in a single file in IDLE, and test them thoroughly. Part of your test should be to
copy the main code from Zybook at the bottom of your file and run it. A sample run is
presented below.

For grading, copy all the functions that you have developed above the main code in the
Zylab.

>>>

Majors of College Students



---------------------------

1. Look up a student’s major

2. Add a new student

3. Change a major

4. Delete a student

5. Display all students

6. Quit the program

Enter your choice: 2

Enter a name: Hagrid

Enter a major: Computer Science

Majors of College Students

---------------------------

1. Look up a student’s major

2. Add a new student

3. Change a major

4. Delete a student

5. Display all students

6. Quit the program

Enter your choice: 2

Enter a name: Hedwig

Enter a major: Mathematics

Majors of College Students

---------------------------

1. Look up a student’s major

2. Add a new student

3. Change a major

4. Delete a student

5. Display all students

6. Quit the program

Enter your choice: 1

Enter a name: Hedwig

Mathematics

Majors of College Students

---------------------------

1. Look up a student’s major

2. Add a new student

3. Change a major

4. Delete a student

5. Display all students

6. Quit the program



Enter your choice: 3

Enter a name: Hagrid

Enter the new major: Physics

Majors of College Students

---------------------------

1. Look up a student’s major

2. Add a new student

3. Change a major

4. Delete a student

5. Display all students

6. Quit the program

Enter your choice: 1

Enter a name: Hagrid

Physics

Majors of College Students

---------------------------

1. Look up a student’s major

2. Add a new student

3. Change a major

4. Delete a student

5. Display all students

6. Quit the program

Enter your choice: 4

Enter a name: Hedwig

Majors of College Students

---------------------------

1. Look up a student’s major

2. Add a new student

3. Change a major

4. Delete a student

5. Display all students

6. Quit the program

Enter your choice: 1

Enter a name: Hedwig

Not found.

Majors of College Students

---------------------------

1. Look up a student’s major

2. Add a new student

3. Change a major



4. Delete a student

5. Display all students

6. Quit the program

Enter your choice: 6

1. Persistence, lab4pr1.py

Modify the your program so that it stores the dictionary in the file “dictionary.txt”
between successive runs of your program. That is, in the very beginning of the main
part of the program it should check whether the file “dictionary.txt” exists and if yes,
it should read the data from the file into the dictionary. At the very end of the main
program, it should write the dictionary content into ”dictionary.txt”. How you store the
data into the file is really up to you. The reading and writing parts should be handled
by separate functions, to avoid cluttering the main part of the program.

2. Computer history exhibit, lab4pr2.txt

In this assignment you will take the role of a museum curator. You will select a piece
to represent a milestone in computer technology development. Together with your class
you will create a CMPS 1500 virtual exhibit of computer history. To start, watch a TED
talk by John Graham-Cumming “The greatest machine that never was” (12 minutes)

https://www.ted.com/talks/john_graham_cumming_the_greatest_machine_that_never_

was?language=en

about the machine that was the first computer and about the first programmer. Then
take some time to visit the exhibits Computer History Museum

http://www.computerhistory.org/exhibits/

Select one piece for our virtual exhibit. It can be a computer program, a hardware device
(e.g., the first mouse) or a computing device, it can be an idea or its realization, or a
phenomenon, or an event. Essentially something that changed the path of computer
technology development. It doesn’t have to be in use today.

For your answer, submit a link to your piece (an article or video about it), the year when
the piece first appeared, and a 3-5 line description of why you believe this is a crucial
piece for the exhibit, what was its role in computer history.

This is not a knowledge-based assignment, you’re not expected to know much computer
history going into this class. You should spend time reading and researching before you
provide the answer. Your link doesn’t have to go to computerhistory.org, if you find
an interesting video on youtube or elsewhere (or maybe you’d like to make one?), you
should include it instead. Remember to provide the specific detail that identifies your
piece (don’t just say ”a mouse”, mention make, model and year for the mouse, and so
on). (The examples used in the text of this assignment - Babbage engine and mouse -
are already taken and cannot be used as an answer).


