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Abstract

As statistical classifiers become integrated into real-
world applications, it is important to consider not only
their accuracy but also their robustness to changes in
the data distribution. In this paper, we consider the case
where there is an unobserved confounding variable z
that influences both the features x and the class vari-
able y. When the influence of z changes from training
to testing data, we find that the classifier accuracy can
degrade rapidly. In our approach, we assume that we
can predict the value of z at training time with some er-
ror. The prediction for z is then fed to Pearl’s back-door
adjustment to build our model. Because of the attenu-
ation bias caused by measurement error in z, standard
approaches to controlling for z are ineffective. In re-
sponse, we propose a method to properly control for the
influence of z by first estimating its relationship with
the class variable y, then updating predictions for z to
match that estimated relationship. By adjusting the in-
fluence of z, we show that we can build a model that
exceeds competing baselines on accuracy as well as on
robustness over a range of confounding relationships.

1 Introduction
Statistical classifiers have become widely used to inform im-
portant decisions such as whether to approve a loan (Hand
and Henley 1997), hire a job candidate (Miller 2015), or re-
lease a criminal defendant on bond (Monahan and Skeem
2016). Given the significant real-world consequences of
such decisions, it is critical that we can identify and re-
move sources of systematic bias in classification algorithms.
For example, some evidence suggests that existing crimi-
nal recidivism models may be racially biased (Angwin et
al. 2016).

One important type of classifier bias arises from con-
founding variables. A confounder z is a variable that is cor-
related both with the input variables (or features) x and
the target variable (or label) y of a classifier. When z is
not included in the model, the true relationship between x
and y can be improperly estimated; in the social sciences
– originally in econometrics – this is called omitted vari-
able bias. While omitted variable bias is a core focus of
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social science (King, Keohane, and Verba 1994), it has re-
ceived much less attention in machine learning communi-
ties, where prediction accuracy is the main concern. Con-
founding variables can be particularly problematic in high-
dimensional settings, such as text classification, where mod-
els may contain thousands or millions of parameters, making
manual inspection of models impractical. The common use
of text classification in computational social science appli-
cations (Lazer et al. 2009) further adds to the urgency of the
problem.

Several studies with interests in public health focused on
tracking the influenza rates in the USA by using Twitter
as a sensor (Paul and Dredze 2011). These studies demon-
strated that machine learning offers more accurate, inex-
pensive, and fast tracking methods than what is currently
used by the CDC. De Choudhury, Counts, and Horvitz built
models to predict postpartum changes in emotion and be-
havior using Twitter data and managed to identify moth-
ers who will change significantly following childbirth with
an accuracy of 71% using observations about their prena-
tal behavior (De Choudhury, Counts, and Horvitz 2013). In
a more recent study, Koratana et al. collected Yik Yak data
– an anonymous social network popular among students –
to study anonymous health issues and substance use on col-
lege campuses (Koratana et al. 2016). The results of these
studies are encouraging for the field of computational so-
cial science but only a few of them are taking into account
the effect of possible confounders. A growing body of work
tries to mitigate the effect of observed confounding variables
using causal inference techniques. For instance, Cunha, We-
ber, and Pappa use a matching approach for causal inference
to estimate the effect of online support on weight loss using
data from Reddit, and De Choudhury et al. leverage propen-
sity score matching to detect users that transition from post-
ing about mental health concerns to posting about suicidal
ideation on Reddit. In this paper, we wish to provide meth-
ods for researchers in computational social sciences to con-
duct observational studies while controlling for confounding
variables even though these might not be directly observed.

In recent work (Landeiro and Culotta 2016), a text classi-
fication algorithm was proposed based on Pearl’s back-door
adjustment (Pearl 2003) as a framework for prediction that
controls for an observed confounding variable. It was found
that this approach results in classifiers that are significantly
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more robust to shifts in the relationship between confounder
z and class label y. However, an important limitation of this
prior work is that it assumes that a training set is available in
which every instance is annotated for both class label y and
confounder z. This is problematic because there are many
confounders we may want to control for (e.g., income, age,
gender, race/ethnicity) that are often rarely available and dif-
ficult for humans to label, particularly in addition to the pri-
mary label y.

A natural solution is to build statistical classifiers for con-
founders z, and use the predicted values of z to control for
these confounders. However, the measurement error of z in-
troduces attenuation bias (Chesher 1991) in the back-door
adjustment, resulting in classifiers that are still confounded
by z.

In this paper, we present a classification algorithm based
on Pearl’s back-door adjustment to control for an unob-
served confounding variable. Our approach assumes we
have a preliminary classifier that can predict the value of
the confounder z, and that we have an estimate of the er-
ror rate of this z-classifier. We offer two methods to adjust
for the mislabeled z to improve the effectiveness of back-
door adjustment. A straightforward approach is to remove
training instances for which the confidence of the predicted
label for z is too low. While we do find this approach can
reduce attenuation bias, it must discard many training exam-
ples, degrading the y-classifier. Our second approach instead
uses the error rate of the z-classifier to estimate the correla-
tion between y and z in the training set. The assignment to z
is then optimized to match this estimated correlation, while
also maximizing classification accuracy. We compare our
methods on two real-world text classification tasks: predict-
ing the location of a Twitter user and predicting if a Twitter
user is smoking or not. Both prediction tasks are using users’
tweets as input data and are confounded by gender. The re-
sulting model exhibits significant improvements in both ac-
curacy and robustness, with some settings producing similar
results as fully-observed back-door adjustment.

2 Related Work
In the machine learning field, selection bias has received
some attention (Zadrozny 2004; Bareinboim, Tian, and Pearl
2014). It arises when the population of a study is not se-
lected randomly. Instead, some users are more inclined to
be selected for the study than others, making it more dif-
ficult to draw conclusions from the general population. If
we denote S whether or not an element of the popula-
tion is selected, there is presence of selection bias when
p(S = 1|X,Y ) 6= p(S = 1). Dataset shift (Quionero-
Candela et al. 2009) is a similar issue that appears when
the joint distribution of features and labels changes between
the training dataset and the testing dataset (i.e. ptr(X,Y ) 6=
pte(X,Y )). Covariate shift (Bickel, Brückner, and Schef-
fer 2009; Sugiyama, Krauledat, and Müller 2007) is a spe-
cific case of dataset shift in which only the inputs distri-
bution is different from training to testing (i.e. ptr(X) 6=
pte(X)). Similarly, when the underlying target distribu-
tion p(Y ) changes over time, either in a sudden way or
gradually, then this is called concept drift (Tsymbal 2004;

Widmer and Kubat 1996). Recent work has studied “fair-
ness” in machine learning (Zemel et al. 2013; Hajian and
Domingo-Ferrer 2013) as well as attempted to remove fea-
tures that introduce bias (Pedreshi, Ruggieri, and Turini
2008; Fukuchi, Sakuma, and Kamishima 2013). Kuroki and
Pearl (2014) propose an extension of back-door adjustment
to deal with measurement error in the confounder, but it does
not scale well when x is high dimensional, as in our setting
of text classification.

Although all these types of biases are important to con-
duct a valid observational study, in this paper we direct our
attention to the problem of learning under confounding bias
shift. In other words, we aim to build a classifier that is ro-
bust to changes in the relation between the target variable Y
of a classifier and an external confounding variable Z. Lan-
deiro and Culotta (2016) use back-door adjustment for text
classification, but assume confounders are observed at train-
ing time. This paper introduces methods to enable back-door
adjustment to work effectively when confounders are unob-
served and when the features are high dimensional.

3 Methods
In this section, we first review prior work using back-door
adjustment to control for observed confounders in text clas-
sification. We then introduce two methods for applying
back-door adjustments when the confounder is unobserved
at training time and must instead be predicted by a separate
classifier.

3.1 Adjusting for observed confounders
Suppose one wishes to estimate the causal effect of a vari-
able x on a variable y when a randomized controlled trial is
not possible. If a sufficient set of confounding variables z is
available, one can use the back-door adjustment equation as
follows:

p(y|do(x)) =
∑
z

p(y|x, z)× p(z) (1)

The back-door criterion (Pearl 2003) is a graphical test
that determines whether z is a sufficient set of variables
to estimate the causal effect. This criterion requires that no
node in z is a descendant of x and that z blocks every path
between x and y that contains an arrow pointing to x. No-
tice p(y|x) 6= p(y|do(x)): this do-notation is used in causal
inference to indicate that an intervention has been made on
x. Omitting the predicted confounder z′, it depicts a stan-
dard discriminative approach to classification, e.g., model-
ing p(y|x) with a logistic regression classifier conditioned
on the observed term vector x. We assume that the con-
founder z′ influences both the term vector through p(x|z)
as well as the target label through p(y|z′). The structure of
this model ensures that z′ meets the back-door criterion for
adjustment.

Back-door adjustment was originally introduced for
causal inference problems — i.e., to estimate the causal ef-
fect of performing action x on outcome y. Recently, Lan-
deiro and Culotta (2016) have shown that back-door adjust-
ment can also be used to improve classification robustness.



By controlling for a confounder z, the resulting classifier is
robust to changes in the relationship between z and y.

From the perspective of standard supervised classifica-
tion, the approach works as follows: Assume we are given
a training set D = {(xi, yi)}. If we suspect that a classifier
trained on D is confounded by some additional variable z,
we augment the training set by including z as a feature for
each instance: D′ = {(xi, yi, zi)}. We then fit a classifier
on D′, and at testing time apply Equation 1 to classify new
examples — p(y|x) =

∑
z p(y|x, z)p(z) — where p(z) is

simply computed from the observed frequencies of z in D′.
By controlling for the effect of z, the resulting classifier is
robust to the case where p(y|z) changes from training to test-
ing data.

In the experiments below, we consider the problem of pre-
dicting a user’s location y based on the text of their tweets
x, confounded by the user’s gender z. That is, in the training
data, there exists a correlation between gender and location,
but we want the classifier to ignore that correlation. When
the above procedure is applied to a logistic regression classi-
fier, the result is that the magnitudes of coefficients for terms
that correlate with gender are greatly reduced, thereby min-
imizing the effect of gender on the classifier’s predictions.

3.2 Adjusting for unobserved confounders
In the previous approach, it was assumed that we had access
to a training set D = {(xi, yi, zi)}; that is, each instance
is annotated both for the label y and confounder z. This
is a burdensome assumption, given that ultimately we will
need to control for many possible confounders (e.g., gen-
der, race/ethnicity, age, etc.). Because many of these con-
founders are unobserved and/or difficult to obtain, it is nec-
essary to develop adjustment methods that can handle noise
in the assignment to z in the training data.

Our approach assumes we have an (imperfect) classifier
for z, trained on a secondary training set Dz = {(xi, zi)}
— we call this the preliminary study, with the resulting
preliminary classifier p(z|x). This is combined with the
dataset Dy = {(xi, yi)}, used to train the primary classi-
fier p(y|x). The advantage of allowing for separate training
sets Dy and Dz is that it is often easier to annotate z vari-
ables for some users than others; for example, Pennacchiotti
and Popescu (2011) build training data for ethnicity classifi-
cation by searching for online users that explicitly state their
ethnicity in their user profiles.

After training on Dz , the preliminary classifier is applied
to Dy to augment it with predicted annotations for con-
founder z: D = {(xi, yi, z′i)}ni=1, where z′i denotes the pre-
dicted value of zi. A tempting approach is to simply apply
back-door adjustment as usual to this dataset, ignoring the
noise introduced by z′. However, the resulting classifier will
no longer properly control for the confounder z for at least
two related reasons:

1. The observed correlation between y and z′ in the train-
ing data will underestimate the actual correlation (i.e.,
|r(y, z′)| < |r(y, z)|). This attenuation bias reduces the
coefficients for the z features, which in turn prevents
back-door adjustment from reducing the coefficients of
features in x that correlate with z.

Figure 1: As measurement error in confounder z increases,
the effectiveness of back-door adjustment decreases.

Noise 0.00 0.05 0.10 0.15 0.20
F1 std dev 0.028 0.037 0.052 0.056 0.062

Table 1: Evolution of the standard deviation of F1 scores in
back-door adjustment for a given noise in z. The lower the
standard deviation, the more robust the model.

2. Similarly, because some training instances have misla-
beled annotations for z, it is more difficult to detect which
features in x correlate with z, thereby preventing back-
door adjustment from reducing those coefficients.

To verify this claim, we conduct an experiment in which
we observe z but we inject increasing amounts of noise in
z (e.g., with probability p, change the assignment to zi to
be incorrect). In other words, we synthetically decrease the
quality of our observations of z and we observe how that in-
fluences the performance of back-door adjustment. We then
measure how the accuracy of the primary classifier for y
varies on a testing set in which the influence of z is de-
creased (i.e., z correlates strongly with y in the training set,
but only weakly in the testing set). These experiments will
be discussed in more detail in Section 4.

We can see in Figure 1 that the F1 score quickly decreases
as we add more noise to the confounding variable annota-
tions, indicating the need for new methods to adjust for un-
observed confounders. Notice that when noise is 0, back-
door adjustment greatly improves F1 (from .79 F1 with no
adjustment to .85 F1), demonstrating the effectiveness of
this approach when the confounder is observed at training
time. In the following two sections, we propose two meth-
ods to fix these issues.

Thresholding on confidence of z predictions Our first
approach is fairly simple; its objective is to directly reduce
the number of mislabeled annotations in z′. Our preliminary
model produces the value z′i (the prediction of the true con-
founder zi) as well as p(zi = z′i|xi) (the confidence of the
prediction; i.e., the posterior distribution over z). We use
these posteriors to remove predictions with low confidence.
By setting a threshold ε ∈ [0.5, 1], we filter the original



dataset D = {xi, yi, z′i} by keeping an instance i only if
it satisfies p(zi = z′i|xi) ≥ ε.

For well-calibrated classifiers like logistic regression, we
expect to remove mostly mislabeled data points by thresh-
olding at ε. Making ε vary between 0.5 and 1 allows us to
modify the output of the preliminary study in order to ob-
tain a sub-dataset with as many points correctly labeled as
possible. Moreover, when the error of our preliminary clas-
sifier is symmetric, this process will also move the estimated
correlation r(y, z′) towards the true correlation r(y, z).

With this smaller set of training instances, we run back-
door adjustment without modification. However, one impor-
tant drawback of this method is that we remove instances
from our training dataset. Depending on the quality of the
preliminary classifier and the setting of ε, only a small frac-
tion of training instances may potentially remain. Thus, in
the next section we consider an alternative approach that
does not require discarding training instances.

Correlation matching While the above approach aims to
reduce errors in z′, and as a side effect improves the esti-
mate of r(y, z), in this section we propose an approach that
directly tries to improve the estimate of r(y, z) while also
reducing errors in z. Let r′ = r(y, z′) be the observed cor-
relation between y and z′, and let r = r(y, z) be the true
(unobservable) correlation between y and z in the training
data for y, D = {xi, yi, z′i}. Our proposed approach builds
on the insight of Francis, Coats, and Gibson (1999), who
show that r′ can be estimated from r using the variances of
y and z as well as the variances of the errors in y and z:

r′ =

√
1

(1 +
Vey

Vy
)(1 + Vez

Vz
)
× r (2)

where Vz is the variance of z, and Vez is the variance of error
on z, and analogously for Vy , Vey . Since in our setting y is
observed, we can set Vey = 0 and solve for r:

r′ =

√
1

1 + Vez

Vz

× r (3)

⇒ r = r′ ×
√
1 +

Vez
Vz

(4)

Thus, the factor by which r′ underestimates r is proportional
to the ratio of the variance of the error in z to the variance of
z.

We can estimate the terms Vz and Vez using cross-
validation on the preliminary training data Dz = {(xi, zi)}.
Let z′i be the value predicted by the preliminary classifier
on instance xi ∈ Dz , where i is in the testing fold of one
cross-validation split of the data. Let ezi = |zi − z′i| be the
absolute error of z on instance i. Then, we can first compute
the mean absolute error of z′i as µez = 1

|Dz|
∑
zi∈Dz

ezi . The
estimated variance of the errors in z is then:

V̂ez =
1

|Dz|
∑
z∈Dz

(ezi − µez)2 (5)

Since this variance in the error of z in turn affects the
observed variance of z, we can then estimate

V̂z = Vz′ − V̂ez (6)

where Vz′ is the variance of predictions z′ in the target train-
ing data D.

Plugging the estimates of Equations 5 and 6 into Equation
4 enables us to estimate the true correlation between y and z
in the target training data D. We will refer to this estimated
correlation as r̂.

As an example, consider a datasetD = {(xi, yi, z′i)}. The
original correlation r(y, z′) ≡ r′ may be .5, but the true cor-
relation r(y, z) ≡ r may be .8. Depending on the variances
of z and its error, the estimated correlation may be r̂ = .75.
The next step in the procedure is to optimize the assignment
to z′ to minimize the difference |r′ − r̂|. That is, we use r̂
as a soft constraint, and attempt to match that constraint by
changing the assignments to z′.

Let Z be the set of all possible assignments to z in the
training setD (i.e., if z is a binary variable and |D| = n, then
|Z| = 2n). Let zj = {zj1 . . . zjn} ∈ Z be a vector of assign-
ments to z, and let r′(zj) indicate the correlation r(zj , y).
Then our objective is to choose an assignment from Z to
minimize r′(zj) − r̂, while still maximizing the probability
of that assignment according to the preliminary classifier for
z. We can write this objective as follows:

z∗ ← argmax
zj∈Z

 1

n

∑
zji∈zj

p(zi = zji |xi)

−|r̂−r′(zj)| (7)

Thus, we search for an optimal assignment z∗ that maxi-
mizes the average posterior of the predicted z value, while
minimizing the difference between the estimated correlation
r̂ and the observed correlation r′(zj).

This optimization problem can be approached in several
ways. We implement a greedy hill-climbing algorithm that
iterates through the values in z′ sorted by confidence and
flips the value if it reduces |r− r′|. The steps are as follows:

1. Initialize zj to the most probable assignment according to
p(z|x).

2. Initialize I to be all instances sorted in descending order
of confidence p(z|x).

3. While |r̂ − r′(zj)| is decreasing:

(a) Pop the next instance (xi, z
j
i , yi) from I

(b) If flipping the label zji reduces the error |r̂− r′(zj)|, do
so. Else, skip to the next instance.

4. Return the final zj .

For example, consider the case where r′(zj) < r̂. If the
instance popped in step 3(a) has labels (yi = 1, z′i = 0), then
we know that flipping zi to 1 would increase the correlation
between y and z′. By considering flips in descending order
of p(z|x), we ensure that we first flip assignments that are
likely to be incorrect. In the experiments below, we find that
this approach often converges after a relatively small number
of flips.

The advantages of this approach are that it not only pro-
duces assignments to z that better align with the expected
correlation r̂, but it also results in more accurate assignments
to z. The latter is possible because we are using prior knowl-
edge about the relationship between z and y to assign values



of z when the classifier is uncertain. As with the threshold-
ing approach of the previous section, once the new assign-
ments to z are found, back-door adjustment is run without
modification.

4 Experiments
We conducted text classification experiments in which the
relationship between the confounder z and the class variable
y varies between the training and testing set. We consider
the scenario in which we directly control the discrepancy
between training and testing. Thus, we can determine how
well a confounder has been controlled by measuring how
robust the method performs across a range of discrepancy
levels.

To sample train/test sets with different p(y|z) distribu-
tions, we assume we have labeled datasets Dtrain, Dtest,
with elements {(xi, yi, zi)}, where yi and zi are binary vari-
ables. We introduce a bias parameter p(y = 1|z = 1) = b;
by definition, p(y = 0|z = 1) = 1−b. For each experiment,
we sample without replacement from each set D′train ⊆
Dtrain, D′test ⊆ Dtest. To simulate a change in p(y|z),
we use different bias terms for training and testing, btrain,
btest. We thus sample according to the following constraints:
ptrain(y = 1|z = 1) = btrain, ptest(y = 1|z = 1) = btest,
ptrain(Y ) = ptest(Y ), and ptrain(Z) = ptest(Z).

The last two constraints are to isolate the effect of changes
to p(y|z). Thus, we fix p(y) and p(z), but vary p(y|z) from
training to testing data. We emphasize that we do not alter
any of the actual labels in the data; we merely sample in-
stances to meet these constraints. In the rest of the paper, we
note rtrain(y, z) (respectively rtest(y, z)) the correlation be-
tween y and z in the training set (resp. testing set). We also
denote δyz = rtrain(y, z)− rtest(y, z).

4.1 Datasets
Location / Gender For our first dataset, we use the data
from Landeiro and Culotta (2016), where the task is to pre-
dict the location of a Twitter user from their messages, with
gender as a potential confounder. Thus, x is a term vector,
y is location, and z is gender. The data contain geolocated
tweets from New York City (NYC) and Los Angeles (LA).
There are 246,930 tweets for NYC and 218,945 for LA over
a four-day period (June 15th to June 18th, 2015). Gender la-
bels are derived by cross-referencing the user’s name (from
the profile) with U.S. Census name data, removing ambigu-
ous names. For each user, we have up to the most recent
3,200 tweets, which we represent each as a single binary un-
igram vector per user, using standard tokenization. Finally,
we subsample this collection and keep the tweets from 6,000
users such that gender and location are uniformly distributed
over the users.

Smoker / Gender In our second dataset, the task is to pre-
dict if a Twitter user is a smoker or not, with gender as a
potential confounder. We start from approx. 3M tweets col-
lected in January and February 2014 using cigarettes related
keywords. We randomly pick 40K tweets for which we can
identify the user’s gender using the Twitter screen name and
the U.S. Census name data. We then manually annotate 4.5K

of these tweets on whether they show that a user is a smoker
(yes) or a non-smoker (no) while discarding uncertain tweets
(unknown). We use this data to train a classifier (F1 score
= 0.84) to label the remaining 35.5K tweets on the smoker
dimension. In order to avoid mislabeled tweets as much as
possible, we only keep predictions with a confidence of at
least 95%, yielding an additional 5.5K automatically labeled
tweets. These 10K (4.5K manually annotated + 5.5K auto-
matically annotated) tweets have been written by 9K unique
users. For each of these users, we collect the most recent
tweets (up to 200). Because some users set their profile to be
private or because some users that existed in early 2014 have
now deleted their account, we obtain at least 20 tweets for
4.6K users. Then we collect all the cigarettes related tweets
published by a user in the first two months of 2014 and add
them to our dataset. Finally, we balance the dataset on both
annotated dimensions by removing users and eventually ob-
tain a dataset of 4084 users.

(a) Effect of ε thresholding on F1z and distance to true correlation.

(b) Effect of correlation matching on F1z and distance to true cor-
relation.

Figure 2: Effect of correlation adjustment methods.



5 Results
We use the following notations to describe the results below:
• δyz = rtrain(y, z) − rtest(y, z) is the discrepancy be-

tween the correlation of y and z in training versus testing.
• r(y, z) (respectively r(y, z′)) is the true (resp. observed)

correlation between y and z.
• r(y, z′ε) (respectively r(y, z′cm)) is r(y, z′) after it has

been adjusting using the ε thresholding method (resp. the
correlation matching method).

• F1z (respectively F1y) is the F1 score for a z (resp. y)
classifier, i.e. for the preliminary (resp. main) study.

5.1 Effects of correlation adjustments on F1z
For this first part of our results, we obtain quasi-identical
outcomes for both datasets. Therefore, we only present the
results from the location/gender dataset.
ε thresholding method: We make ε vary between 0.5 and
0.95 and observe how this reduces the difference between
r(y, z′ε) and r(y, z). Figure 2(a) shows the result of one set-
ting where r(y, z) = 0.4. The figure demonstrates that by
increasing ε, rε(y, z) gets closer to the true r(y, z), and the
performance of our external study is improved. This indi-
cates that the classifier is well calibrated (since high confi-
dence predictions are more likely to be correct). However,
it takes a high value of ε to get a correct approximation of
the true association between y and z, meaning that we need
to discard a large amount of data points from our prelimi-
nary study to approximate r(y, z). For example, at ε = .9,
roughly half of the training instances remain.
Correlation matching method: For this method, we make
the true correlation r(y, z) change between −0.8 and 0.8
and we plot the results on Figure 2(b). We observe in the top
plot that after adjustment, our estimate rcm(y, z) is within
0.1 of the true correlation in the worst case against 0.4 with-
out adjustment. This is a clear improvement in the correla-
tion estimation. (For comparison, achieving a similarly ac-
curate estimate using ε thresholding requires removing 60%
of 1500 instances.) We can also notice that the performance
of our preliminary study greatly increases when we improve
the estimation of r(y, z), particularly when r(y, z) is high.
For example, when r(y, z) is .8, the F1z improves from .77
to .9, on average. Thus, correlation matching appears to both
recover the true correlation while simultaneously improving
the quality of the classifications of z.

5.2 Effects of correlation adjustments on F1y
Location / Gender
Fixed F1z = 0.784: As our primary result, we report the
F1y obtained by different correlation adjustment methods
across a range of shifts in the discrepancy between training
and testing. For the Twitter dataset, the best performance we
get in the preliminary study is F1z = 0.784. We then com-
pare testing F1y as rtrain(y, z) and rtest(y, z) vary. The re-
sults are shown in Figure 3(a). Without any adjustment, the
performance we get is close to Logistic Regression. When
using ε thresholding, the performance is slightly improved
in the extreme cases but only by a few points at most. How-
ever, when using the correlation matching method, we im-

(a) Location/gender dataset

(b) Smoker/gender dataset

Figure 3: F1y of the different adjustment methods when
F1z is fixed to its maximal value vs. logistic regression (z +
LR) and back-door adjustment (z + BA) when z is observed.

F1z No adjustment Corr. matching ε thresh.
0.784 0.0640 0.0212 0.0610
0.764 0.0674 0.0313 0.0671
0.702 0.0677 0.0357 0.0803
0.670 0.0672 0.0345 0.0783
0.645 0.0705 0.0537 0.101
0.557 0.0715 0.124 0.0954
0.519 0.0709 0.0916 0.0941

Table 2: Standard deviation as a measure of robustness. The
smaller the standard deviation, the more robust the model.
The most robust model is shown in bold for each F1z value.

prove F1y by 10 to 15 points in the most extreme cases. For
comparison, the figure also shows the fully observed case
(z+BA), which uses back-door adjustment on the true val-
ues of z. We can see that correlation matching is comparable



(a) No adjustment. (b) Thresholding at ε = 0.75. (c) Correlation matching.

Figure 4: Experimental results for back-door adjustment with an unobserved confounding variable in the location/gender
dataset.

to the fully observed case, even with a 20% error rate on z.
These results show that by getting a better estimate of the
association between y and z, we can reduce attenuation bias
and improve the robustness of our classifier, even though our
observation of z is noisy.
Variable F1z: We showed in the previous section that
when we use our preliminary study with F1z = 0.784, we
can build a robust classifier using the correlation matching
method combined with back-door adjustment. We also saw
in Figure 1 that back-door adjustment when z is observed at
training time is sensitive to noise in z. As a similar study, we
want to see how sensitive the correlation adjustment meth-
ods are to the quality of F1z . To do so, we increasingly add
noise to the dataset used to train the preliminary classifier
(Dz = {xi, zi}) to make F1z decrease. Because we want
to visualize F1y against two variables (F1z and δyz), we vi-
sualize the results in a heatmap. In order to make the results
clear to the reader, here are additional details to understand
what is displayed on the heatmap: The x-axis of a heatmap
is δyz and the y-axis is F1z . The line plot on the left of the
heatmap shows F1z given F1y averaged over all possible
values for δyz . The error bars are the standard deviations
of F1y , indicating how sensitive the model is to variations
of δyz . Similarly, the scatter plot above the heatmap shows
F1y given δyz averaged over all possible values for F1z .
The error bars are the standard deviations of F1y for the
matching δyz .

Moreover, Table 2 displays the values of the standard de-
viations shown in the scatter plot at the left of each heatmap
as a measure of robustness. Figure 4(a) shows the heatmap
of results for back-door adjustment when we use the predic-
tions of the preliminary study but none of the methods to fix
the mislabeled values in z′ are used. Figures 4(b) and 4(c)
respectively show the heatmaps of results when we use ε
thresholding with ε = 0.75 and correlation matching. Simi-
lar to Figure 3(a), ε thresholding only brings small improve-
ment to no adjustment at all. Furthermore, when F1z de-
creases, the correlation adjustment using ε thresholding is
performing worse than when we are not doing any corre-
lation adjustment as well as it is less robust. Clearly, the ε
thresholding method is more sensitive to the quality of the

preliminary study than the other methods.
The correlation matching method (Figure 2(b)) does out-

perform the other methods in robustness and F1y for most
of the cases but when F1z < 0.645, as we can see by the
wider range of red values in Figure 4(c). In this latter case, it
performs worse than the method without adjustment. This
method is also sensitive to the quality of the preliminary
study as we can see that the averaged F1y decreases with
F1z . Let us remind one more time that we are considering
here only preliminary studies with an F1z of at most 0.784.
Therefore, F1z could be up to 22 points greater with a dif-
ferent dataset. This would hopefully lead to similar results
than when F1z = 0.784 with correlation matching and bet-
ter results in F1y and robustness with ε thresholding.
Smoker / Gender
Fixed F1z = 0.791: Similarly to the previous experiment,
we report F1y while making δyz vary as our primary result
in Figure 3(b). We observe that predicting if a user smokes
or not is a much more difficult task than our previous bi-
nary location prediction task, as the maximum yielded F1y
is around .75 when it was approximately .9 in the previous
task. We also notice that the robustness of the back-door ad-
justment methods is not as good as for the location/gender
dataset. The correlation matching method manages to per-
forms closely to z + BA for δyz ≥ −0.75 and outperforms
all other methods for δyz ≥ 1 but we also witness an ac-
curacy drop on the left part of the plot. In addition to this
drop, our two most robust methods (z + BA and correla-
tion matching) are outperformed by approximately 5 points
when there is no difference between the training correlation
and the testing correlation (when δyz = 0).
Variable F1z: When making F1z vary with the
smoker/gender dataset, we observe comparable out-
comes as the ones displayed in the heatmaps of Figure 4 but
with a lesser overall accuracy. As back-door adjustment was
not performing as well as with the location/gender dataset
in the fixed F1z case, it logically also does not perform as
well when F1z varies. If we obtain a V-shaped heatmaps
similar to Figures 4(b) and 4(c), the slope indicating that the
classifier’s’ performance deteriorates when F1z decreases
is steeper. This may show that our adjustments methods are



more sensitive to noise in the confounding variable when
the classification task is overall harder. We do not display
the resulting heatmap for the smoker/gender experiment in
this paper for brevity but we will make the dataset and the
code to reproduce the results available online.

6 Conclusion
In this paper, we have proposed two methods of using back-
door adjustment to control for an unobserved confounder.
Using two real-life datasets extracted from Twitter, we have
found that correlation matching on the predicted confounder
associated with back-door adjustment can retrieve the under-
lying correlation r(y, z) and perform closely to back-door
adjustment with an observed confounder. We also showed
that ε thresholding can be used to slightly improve the pre-
dictions compared to logistic regression. If ε thresholding
will not be able to adjust for the unobserved confounder z
when F1z < 0.75, we showed that correlation matching
provides a way to adjust for an unobserved confounder and
outperform plain back-door adjustment as long as F1z >
0.65. In future work, we will consider hybrid methods that
combine ε thresholding and correlation matching to increase
robustness as F1z decreases.

Acknowledgments
This research was funded in part by the National Science
Foundation under awards #IIS-1526674 and #IIS-1618244.

References
[Angwin et al. 2016] Angwin, J.; Larson, J.; Mattu, S.; and
Kirchner, L. 2016. Machine bias. ProPublica 23.

[Bareinboim, Tian, and Pearl 2014] Bareinboim, E.; Tian, J.;
and Pearl, J. 2014. Recovering from selection bias in causal
and statistical inference. In Proceedings of The Twenty-
Eighth Conference on Artificial Intelligence (CE Brodley
and P. Stone, eds.). AAAI Press, Menlo Park, CA.

[Bickel, Brückner, and Scheffer 2009] Bickel, S.; Brückner,
M.; and Scheffer, T. 2009. Discriminative learning un-
der covariate shift. Journal of Machine Learning Research
10(Sep):2137–2155.

[Chesher 1991] Chesher, A. 1991. The effect of measure-
ment error. Biometrika 78(3):451–462.

[Cunha, Weber, and Pappa 2017] Cunha, T. O.; Weber, I.;
and Pappa, G. L. 2017. A warm welcome matters! the link
between social feedback and weight loss in/r/loseit. arXiv
preprint arXiv:1701.05225.

[De Choudhury et al. 2016] De Choudhury, M.; Kiciman, E.;
Dredze, M.; Coppersmith, G.; and Kumar, M. 2016. Discov-
ering shifts to suicidal ideation from mental health content
in social media. In Proceedings of the 2016 CHI Confer-
ence on Human Factors in Computing Systems, 2098–2110.
ACM.

[De Choudhury, Counts, and Horvitz 2013] De Choudhury,
M.; Counts, S.; and Horvitz, E. 2013. Predicting postpar-
tum changes in emotion and behavior via social media. In
Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, 3267–3276. ACM.

[Francis, Coats, and Gibson 1999] Francis, D. P.; Coats,
A. J.; and Gibson, D. G. 1999. How high can a correlation
coefficient be? effects of limited reproducibility of common
cardiological measures. International journal of cardiology
69(2):185–189.

[Fukuchi, Sakuma, and Kamishima 2013] Fukuchi, K.;
Sakuma, J.; and Kamishima, T. 2013. Prediction with
model-based neutrality. In Machine Learning and Knowl-
edge Discovery in Databases. Springer. 499–514.

[Hajian and Domingo-Ferrer 2013] Hajian, S., and
Domingo-Ferrer, J. 2013. A methodology for direct
and indirect discrimination prevention in data mining.
Knowledge and Data Engineering, IEEE Transactions on
25(7):1445–1459.

[Hand and Henley 1997] Hand, D. J., and Henley, W. E.
1997. Statistical classification methods in consumer credit
scoring: a review. Journal of the Royal Statistical Society:
Series A (Statistics in Society) 160(3):523–541.

[King, Keohane, and Verba 1994] King, G.; Keohane, R. O.;
and Verba, S. 1994. Designing social inquiry: Scientific
inference in qualitative research. Princeton university press.

[Koratana et al. 2016] Koratana, A.; Dredze, M.; Chisolm,
M. S.; Johnson, M. W.; and Paul, M. J. 2016. Studying
anonymous health issues and substance use on college cam-
puses with yik yak. In Workshops at the Thirtieth AAAI Con-
ference on Artificial Intelligence.

[Kuroki and Pearl 2014] Kuroki, M., and Pearl, J. 2014.
Measurement bias and effect restoration in causal inference.
Biometrika 101(2):423–437.

[Landeiro and Culotta 2016] Landeiro, V., and Culotta, A.
2016. Robust text classification in the presence of confound-
ing bias. In Thirtieth AAAI Conference on Artificial Intelli-
gence.

[Lazer et al. 2009] Lazer, D.; Pentland, A. S.; Adamic, L.;
Aral, S.; Barabasi, A. L.; Brewer, D.; Christakis, N.; Con-
tractor, N.; Fowler, J.; Gutmann, M.; et al. 2009. Life in the
network: the coming age of computational social science.
Science (New York, NY) 323(5915):721.

[Miller 2015] Miller, C. C. 2015. Can an algorithm hire bet-
ter than a human? The New York Times 25.

[Monahan and Skeem 2016] Monahan, J., and Skeem, J. L.
2016. Risk assessment in criminal sentencing. Annual Re-
view of Clinical Psychology 12:489–513.

[Paul and Dredze 2011] Paul, M. J., and Dredze, M. 2011.
You are what you tweet: Analyzing twitter for public health.
ICWSM 20:265–272.

[Pearl 2003] Pearl, J. 2003. Causality: models, reasoning
and inference. Econometric Theory 19:675–685.

[Pedreshi, Ruggieri, and Turini 2008] Pedreshi, D.; Rug-
gieri, S.; and Turini, F. 2008. Discrimination-aware
data mining. In Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data
mining, 560–568. ACM.

[Pennacchiotti and Popescu 2011] Pennacchiotti, M., and
Popescu, A.-M. 2011. A machine learning approach to twit-
ter user classification. ICWSM 11(1):281–288.



[Quionero-Candela et al. 2009] Quionero-Candela, J.;
Sugiyama, M.; Schwaighofer, A.; and Lawrence, N. D.
2009. Dataset shift in machine learning. The MIT Press.

[Sugiyama, Krauledat, and Müller 2007] Sugiyama, M.;
Krauledat, M.; and Müller, K.-R. 2007. Covariate shift
adaptation by importance weighted cross validation. The
Journal of Machine Learning Research 8:985–1005.

[Tsymbal 2004] Tsymbal, A. 2004. The problem of con-
cept drift: definitions and related work. Computer Science
Department, Trinity College Dublin 106.

[Widmer and Kubat 1996] Widmer, G., and Kubat, M. 1996.
Learning in the presence of concept drift and hidden con-
texts. Machine learning 23(1):69–101.

[Zadrozny 2004] Zadrozny, B. 2004. Learning and evaluat-
ing classifiers under sample selection bias. In Proceedings of
the twenty-first international conference on Machine learn-
ing, 114. ACM.

[Zemel et al. 2013] Zemel, R.; Wu, Y.; Swersky, K.; Pitassi,
T.; and Dwork, C. 2013. Learning fair representations. In
Proceedings of the 30th International Conference on Ma-
chine Learning (ICML-13), 325–333.


	1 Introduction
	2 Related Work
	3 Methods
	3.1 Adjusting for observed confounders
	3.2 Adjusting for unobserved confounders

	4 Experiments
	4.1 Datasets

	5 Results
	5.1 Effects of correlation adjustments on F1z
	5.2 Effects of correlation adjustments on F1y

	6 Conclusion

