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ABSTRACT
Many active learning methods use annotation cost or expert qual-
ity as part of their framework to select the best data for annota-
tion. While these methods model expert quality, availability, or
expertise, they have no direct influence on any of these elements.
We present a novel framework built upon decision-theoretic ac-
tive learning that allows the learner to directly control label qual-
ity by allocating a time budget to each annotation. We show that
our method is able to improve performance efficiency of the active
learner through an interruption mechanism trading off the induced
error with the cost of annotation. Our simulation experiments on
three document classification tasks show that some interruption is
almost always better than none, but that the optimal interruption
time varies by dataset.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design Methodology—Classifier de-
sign and evaluation

General Terms
Algorithms, Experimentation, Human Factors, Measurement, Per-
formance

Keywords
Active learning, anytime algorithms, value of information, empiri-
cal evaluation

1. INTRODUCTION
Active learning [2] seeks to reduce the human effort required

to train a classifier. This is typically done by optimizing which
instances are annotated in order to maximize accuracy while min-
imizing the total cost of annotations. In this paper, we begin with
the simple observation that in many domains, the expert/user forms
an opinion about the class of an instance incrementally by continu-
ously analyzing the instance. For example, in document classifica-
tion, the expert forms an opinion about the topic of the document
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incrementally while reading the document. In tumor detection by
CT-scan, a radiologist forms an opinion as s/he spends more and
more time on the images. In intrusion detection, a security ana-
lyst must inspect various aspects of network activity to determine
whether an attack has occurred.

We introduce a novel framework in which the active learner has
the ability to interrupt the expert and ask his/her best guess so far.
We refer to such a framework as anytime active learning, since the
expert may be expected to return an annotation for an instance at
any time during their inspection. For example, in document classi-
fication, we may show the expert only the first k words of a docu-
ment and ask for the best guess at its label. We refer to a portion
of an instance as a subinstance. Of course, the downside of this ap-
proach is that it can introduce annotation error — reading only the
first k words may cause the annotator to select an incorrect label for
the document. Assuming that both the cost to annotate an instance
and the likelihood of receiving a correct label increase with the time
the expert spends on an instance, the active learner has a choice on
how to spend its budget: to collect either many but low-quality or
few but high-quality annotations.

Our active learning framework thus models the tradeoff between
the cost of annotating a subinstance (a function of its size) and
the value of the (possibly incorrectly labeled) instance. At each
iteration, the algorithm searches over subinstances to optimize this
tradeoff — for example, to decide between asking the human ex-
pert to spend more time on the current document or move on to
another document. We build upon the value of information the-
ory [6], where the value of a subinstance is the expected reduction
in the generalization error after the instance is added to the training
set. The subinstance with the highest value cost difference is shown
to the expert for annotation.

While previous work has considered the cost-benefit tradeoff of
each instance [7] as well as annotation error [3], to our knowl-
edge this is the first approach that allows the learning algorithm
to directly control the annotation cost and quality of an instance
by either interrupting the expert or revealing only a portion of an
instance. Though closely-related, our framework differs from the
missing feature-value acquisition problem [1, 10]; in our frame-
work the feature values are not missing but the expert is interrupted.

We perform experiments on three document classification tasks
to investigate the effectiveness of this approach. In particular, we
provide answers to the following research questions:

RQ1. Annotation Error: Given that greater interruption can lead
to greater annotation error, how do active learning algorithms
perform in the presence of increasing amount of noise? We
find that naïve Bayes consistently outperforms logistic re-
gression and support vector machines as the amount of label
noise increases, both in overall accuracy and in learning rate.
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RQ2. Cost-Quality Tradeoff: Under what conditions is the cost
saved by using subinstances worth the error introduced? How
does this vary across datasets? We find that some interrup-
tion is almost always better than none, resulting in much
faster learning rates as measured by the number of words an
expert must read. For example, in one experiment, annotat-
ing based on only the first 10 words of a document achieves a
classification accuracy after 5,000 words that is comparable
to a traditional approach requiring 25,000 words. The pre-
cise value of this tradeoff is unsurprisingly data dependent.

RQ3. Adaptive Subinstance Selection: Does allowing the learn-
ing algorithm to select the subinstance size dynamically im-
prove learning efficiency? We find that selecting the subin-
stance size dynamically is comparable to using a fixed size.
One advantage of the dynamic approach is that formulating
the size preference in terms of the cost of improving the
model may provide a more intuitive way of setting model
parameters.

The rest of the paper is organized as follows: Section 2 presents
our active learning framework, including implementation details
and experimental methodology; Section 3 presents our results and
provides more detailed answers to the three research questions above;
Section 4 briefly summarizes related work; and Sections 5 and 6
conclude and discuss future directions.

2. METHODOLOGY
In this section, we describe our methodology for the active learner

that has the choice to interrupt the expert at any time. Let L =
{(x1, y1) . . . (xn, yn)} be a set of tuples containing an instance xi
and its associated class label yi ∈ {y0, y1}. (For ease of presenta-
tion, we assume binary classification.) Let PL(y|x) be a classifier
trained on L. Let U = {xn+1 . . . xm} be a set of unlabeled in-
stances. Let xk ⊆ x be a subinstance representing the interruption
of the expert at time k; or analogously the document containing the
first k words in document x. For ease of discussion, we will use the
document example in the remainder of the paper.

Let Err(PL) be defined as the expected loss of the classifier
trained on L. The value of information for xki is defined as the
reduction in the expected loss:

V OI(xki ) = Err(PL)− Err(PL∪(xi,yi))

where L∪ (xi, yi) is the training set expanded with the label of xi,
which is provided by the expert through inspecting xki . Because
we do not know what label the expert will provide, we take an
expectation over possible labelings of xki :

V OI(xki ) = Err(PL)−
∑
yj

PL(yj |xki )Err(PL∪(xi,yj)) (1)

Note that even though the expert labels only subinstance xki , we
include the entire document xi in our expanded set L ∪ (xi, yj).

The decision-theoretic active learning strategy picks the subin-
stance that has the highest value cost difference:

argmax
xk
i⊆xi∈U

V OI(xki )− λC(xki ) (2)

where C(xki ) is the cost of labeling xki and λ is a user-defined pa-
rameter that translates between generalization error and annotation
cost. We explain the role of this parameter in detail in Section 2.3.

We next provide the details on how we define the error function
Err(.), the cost function C(.), and the intuition for the parameter
λ.

2.1 The Error Function Err(.)

We define the generalization errorErr(PL) through a loss func-
tion L(PL(y|x)) defined on an instance:

Err(PL) = E [L(PL(y|x)]

=

∫
x

L(PL(y|x))P (x)

≈ 1

|U|
∑
x∈U

L(PL(y|x))

A common loss function is 0/1 loss. However, because we do
not know the true label of the instances in the unlabeled set U , we
need to use proxies for the loss function L. For example, a proxy
for 0/1 loss is:

L(PL(y|x)) = 1−max
yj

PL(y
j |x) (3)

One problem with this proxy in practice is that it trivially achieves
0 loss when all the instances are classified into one class with proba-
bility 1. We instead formulate another proxy, which we call ranked-
loss. The intuition for ranked-loss is that, in practice a percentage
of instances are expected to belong to class y0 whereas the rest are
classified as class y1. Let p ∈ [0, 1] be the proportion of instances
with label y0. Then, in U , we expect p × |U| of instances to have
label y0 and the remaining instances to have label y1.

When we are computing the loss, we first rank the instances in
U in descending order of PL(y0|xi). Let this ranking be xr1 , xr2 ,
. . ., xr|U| . Then, ranked-loss is defined as:

LRL(PL(y|xri)) =


1− PL(y0|xri) if i < |U| × p

1− PL(y1|xri) otherwise
(4)

where p is the proportion of instances that are expected to be
classified as class y0. This formulation requires us to know p,
which is known approximately in most domains. In this paper, we
use p = 0.5 by default, though this could be estimated directly
from the training data.

Note that when we use 0/1 loss proxy (Equation 3), the trivial so-
lution of classifying all instances as y0 with probability 1 achieves
0 error, whereas the ranked-loss for this trivial solution leads to an
error of 1 − p. We leave for future work an empirical comparison
of alternative loss functions.

2.2 The Cost Function C(.)

The cost function C(xki ) denotes how much the expert charges
for annotating the subinstance xki . In practice, this cost depends on
a number of factors including intrinsic properties of xi, the value of
k, and what the expert has just annotated (the context-switch cost).
To determine the true cost, user studies need to be conducted. In
this paper, we make a simplifying assumption and assume that the
cost depends simply on k. For documents, we can assume:

C(xki ) = k

or

C(xki ) = log(k)

In this paper, we follow [7] and assume the annotation cost is a
linear function of the instance length: C(xki ) = k.

2.3 The Parameter λ

The value of information for xki is in terms of reduction in the
generalization error whereas the annotation cost C(xki ) is in terms
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of time, money, etc. The parameter λ reflects how much/little the
active learner is willing to pay per reduction in error.

Note that both 0/1 loss (Equation 3) and ranked-loss (Equation 4)
range between 0 and 0.5, whereas the linear annotation cost is k.
A λ value of 0.0001 means that for an x100i to be considered for
annotation, V OI(x100i ) has to be at least 0.01; that is, x100i has to
reduce the error by an absolute amount of 0.01.

Typically, in the early iterations of active learning, improving
the classifier is easier, and hence the range of V OI is larger com-
pared to the later iterations of active learning. Therefore, the active
learner is willing to pay less initially (because improvements are
easy) but should be willing to pay more in later iterations of learn-
ing. Hence, a larger λ is preferred at the earlier iterations of active
learning. Following this intuition, we define an adaptive λ that is a
function of the current error of the classifier, Err(PL):

λ = Err(PL)× γ

where γ is a fixed parameter denoting the desired percentage im-
provement on the current error of the model. For a fixed γ, λ is big-
ger initially because Err(PL) is larger initially, and as the model
improves, Err(PL) goes down and so does λ.

2.4 The Effect of Annotation Error
As discussed above, selecting small subinstances (equivalently,

interrupting the expert after only a short time) can introduce an-
notation error. While previous work has proposed ways to model
annotation error based on the difficulty of x or the expertise of the
teacher [14], here the error is introduced by the active learning strat-
egy itself.

Rather than attempt to model this error directly, we observe that
the objective function in Equation 2 already accounts for this error
somewhat through the loss function. That is, if y∗ is the true la-
bel of xi, then we expect Err(PL∪(xi,y∗)) < Err(PL∪(xi,¬y∗)).
Note that the expanded training set includes the full instance, not
simply the subinstance. This fact in part offsets inaccuracies in the
term PL(yj |xki ) introduced by using subinstances. We study the
empirical effect of this error in Section 3.

2.5 Implementation Details and Baselines
In this section, we provide details on how we implemented our

objective function Equation 2 and define a few baseline approaches.
Let C = {x1 . . . xs} be a set of candidate instances for annota-

tion, where C ⊆ U . We create a new set C′ of subinstances xki from
C. That is, our new search space includes xi and all subinstances
derived from it. We use this new space to apply our objective Equa-
tion 2.

We can illustrate the space defined by C′ as a matrix where each
row i allocates document xi and all its derived subinstances xk in
ascending order of size. For simplicity, assume that k has incre-
ments of 10 words. The diagram illustrates the idea:



x10
1 x20

1 . . . xk
1

x10
2 x20

2 . . . xk
2

...
x10
i x20

i . . . xk
i

...
x10
n x20

n . . . xk
n

. . . x100
1 x1

. . . x100
2 x2

...
. . . x100

i xi

...
. . . x100

n xn



FullFixed

We use this matrix to illustrate how our algorithm works as well
as several baselines. At each iteration, our algorithm searches this
entire matrix and picks the best candidate according to the objective
function Equation 2. We refer to this method as QLT-γ (where γ
is the desired percentage of improvement).

Note that computing V OI for each candidate is computationally
very expensive. We need to retrain our classifier for all possible
labelings of each candidate. However, since a subinstance is only
used for obtaining a label and we add xi (full instance) to L, there-
fore we only retrain our classifier once for each possible label of
xi. That is, our algorithm has the same computational complexity
as any V OI-based strategy.

We define two baselines that ignore the cost of annotation. These
approaches explore the candidates in C′ by only searching at the
fixed size column xki and selecting the best from that column. These
approaches are:

• RND-FIX-k, a baseline, uses random sampling over candi-
dates of size k. That is, random sampling elements of column
k.

• EER-FIX-k, a baseline that uses V OI over column k. Note
that this is equivalent to expected error reduction (EER) ap-
proach (as described in [12]) on column k.

• RND-FULL and EER-FULL, baselines that use random sam-
pling and expected error reduction (EER) respectively with
full size instances. These approaches search on the last col-
umn of the matrix.

Notice that once a fragment xki is selected as the best option for
xi all other fragments of that document (i.e. row i) will be ignored.

2.6 Experimental Evaluation
In this section, we first describe the datasets and then describe

how we evaluated the aforementioned methods.

2.6.1 Datasets
We experimented with three real-world datasets for text classi-

fication with train and test partitions; details of these dataset are
available in Table 1. Reuters known as Reuters-21578 collection
[8] is a collection of documents from Reuters newswire in 1987.
We created a binary partition using the two largest classes in the
dataset, earn and acq. SRAA is a collection of Usenet articles from
aviation and auto discussion groups from [11]. For SRAA-Aviation
dataset, we created a binary dataset using the aviation-auto parti-
tion. IMDB (movie) dataset is a collection of positive and negative
movie reviews used in [9].

We preprocessed the dataset so that it is appropriate for a multi-
nomial naïve Bayes. That is, we replaced all the numbers with a
special token, stemmed all the words and eliminated terms that ap-
pear fewer than five times in the whole corpus. Stop words are not
removed from the data to make sure the number of words the expert
sees is similar to the number of words the model sees. We stress,
however, that we kept the sequence of words in the documents, and
that with the preprocessing the number of words did not change sig-
nificantly. For example, the average document length before pre-
processing in dataset Movie was 239 words and after preprocessing
the average document length is 235 words.

2.6.2 Evaluation Methodology
For the active learning results, we simulated interaction with real

users by using a student classifier and an expert classifier — the
expert classifier has the same form as the student, but is trained on
more examples (and thus has higher accuracy). We experimented
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Table 1: Description of the real-world datasets: the domain,
the number of instances, and label distribution.

Name Feat. Train Test Total Inst. Label dist.
IMDB 26,784 25,000 25,000 50,000 50%
Reuters 4,542 4,436 1,779 6,215 36%
SRAA - Aviation 32,763 54,913 18,305 73,218 37%

with the multinomial naïve Bayes (MNB) classifier implemented
in Weka [5]. Moreover, we prefer MNB to simulate an expert since
it intuitively simulates how a human expert works. For instance, a
human annotator builds his/her belief about the label of a document
as s/he reads it. That is, each read word builds evidence upon the
previous ones read. Similarly, MNB builds evidence based on the
terms that appear in a document to determine its classification.

The default implementation of MNB uses Laplace smoothing.
This implementation does not perform well for random sampling
as well as active learning strategies in our datasets based on some
preliminary experiments. We instead used informed priors where
the prior for each word is proportional to its frequency in the cor-
pus. Laplace smoothing is equivalent to create two fake documents,
where each document contains every word in the dictionary exactly
once. Informed priors is equivalent to creating two fake documents
where every word appears proportional to its frequency in the cor-
pus. This way, the prior will smooth more highly common terms to
avoid accidental correlations that exist due to limited training data.
For the purposes of this document when we refer to the classifier
we mean this implementation unless otherwise stated.

We used the original train-test partitions of the dataset. The test
partition is used for only testing purposes. We further divided the
original train split into two: half is used for training the expert
model while the remaining half is used as the unlabeled set U . We
performed two-fold validation in this fashion.

Simulating Noisy Experts: Given the thousands of annotations
required for our experiments, we propose a method to simulate the
noise introduced by labeling document fragments. (We leave user
studies to future work.) In each experiment, we reserve a portion
of the data to train a classifier that will simulate the human expert.
When a new annotation is required by the learning algorithm, the
prediction of this classifier is used. To simulate annotation of a
document fragment, we simply classify the document consisting of
the first k words.

We bootstrap all methods with two randomly chosen instances
(one for each class). Then at each active learning step, we select
randomly 250 unlabeled instances from U as candidates for label-
ing. The current loss and other computations needed by the meth-
ods are computed on a subset of 1000 unlabeled instances from the
remainder of U (i.e. U \ Candidates).

We evaluate performance on the test split of the dataset, report
averages over the two folds and five trials per fold, and measure
accuracy over a budget of number of words.

3. RESULTS AND DISCUSSION
In this section, we analyze our empirical results to address the

three research questions from Section 1. Since our interest is to
find the best way to spend a budget and we focus on cost-sensitive
methods, we analyze the performance of each method given a bud-
get of the number of words an expert can read. We approach our
discussion considering both performance measure and spending of
the budget.

3.1 RQ1. Annotation Error
Given that greater interruption can lead to greater annota-

tion error, how do active learning algorithms perform in the
presence of increasing amount of noise?

To answer this question we designed an active learning experi-
ment using different levels of label noise introduced in the training
data. We tested Multinomial naïve Bayes with informed priors, L2

regularized logistic regression (LR) and support vector machines
(SVM) implementation by LibLinear [4].

For the Label Noise Effect experiments, we create noisy data
from the original training sets. We flipped the labels of 10% to
50% of the instances randomly. We evaluated using a train-test
split repeating the experiment 10 times. Each experiment starts
selecting two random instances (one for each class) and continues
sampling randomly 10 instances at a time. We report the average
over 10 trials.

In our results we observed that for all classifiers the performance
unsurprisingly decreases at greater levels of noise. Figure 1 shows
the accuracy performance of the three classifiers on data with 10%
and 20% label noise. All three classifiers performed better on data-
sets with 10% noise (Figure 1(a), Figure 1(b) and Figure 1(c)) com-
pared to 20% noise (Figure 1(d), Figure 1(e) and Figure 1(f)). Sim-
ilar results were found with greater levels of noise however we use
only two examples for illustration.

Interestingly, we observed that LR and SVM are more affected
by the noise than MNB in particular at larger budgets. Moreover,
MNB outperforms both LR and SVM at later iteration in the learn-
ing curve. This becomes more evident with greater percentages
of noise. For instance, in Figure 1(b) MNB has a slower learn-
ing curve compared to LR and SVM whereas in Figure 1(e) MNB
outperforms both classifiers half way through the learning curve.

In general, with greater levels of label noise the performance
of the tested classifiers gradually decreased. However, we find that
MNB consistently outperforms LR and SVM as the amount of label
error increases, both in overall accuracy and in learning rate, and
so we use MNB in all subsequent experiments.

3.2 RQ2 - Cost-Quality Tradeoff
Under what conditions is the cost saved by using subinstances

worth the error introduced? How does this vary across datasets?

In Section 2, we proposed that expanding the search space to in-
clude subinstances could reduce annotation cost. Furthermore, we
argue that it is possible to trade off the cost and the value of the
information obtained from an instance. However, we still have to
establish how the use of subinstances affects the learning perfor-
mance of the model. In this section, we discuss our findings on the
use of labeling subinstances instead of full instances.

For this purpose, we tested the quality of the expert model train-
ing in one half of the data and tested showing the expert only the
first k words of the documents. Also, we performed active learning
experiments using random sampling and Expected Error Reduction
(EER) as baselines testing subinstances of sizes 10 - 30 and 50. We
followed the experimental methodology described in Section 2.6.

Our results show that using full size instances was never a good
strategy, performing similar to the random sampling baseline. Fig-
ure 2 shows that for all datasets EER-FULL and RND-FULL were
about the same.

However, in general, using subinstances improves the perfor-
mance on the active learner model. We conclude that the tested
model prefers to obtain numerous noisy labels rather than fewer
high quality ones. For instance, Figure 2(a) shows RND-FIX--
10 and RND-FIX-30 perform better than RND-FULLand EER--
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Figure 1: Effect of Noise on the learning rate of several classifiers. MNB is less affected by label noise than LR and SVM.

FULL on Movie dataset. Similarly, EER-FIX-10 and EER--
FIX-30 outperform both random sampling counterparts. Further-
more, Figure 2(b) shows that with subinstances of size 10 the expert
quality is only about 70%, more than 15 points bellow expert qual-
ity using full instances. Similar results were observed on Reuters
dataset (see Figure 2(e) and Figure 2(f)). This set of results con-
firms those reported in the Section 3.1.

In contrast, on Aviation dataset we observed that not all sizes of
subinstances performed better than methods with full instances. In
this case, EER-FIX-10 was worse than RND-FULL and EER--
FULL whereas EER-FIX-50 outperformed all other methods.

In general, we find that some interruption is almost always bet-
ter than none, resulting in much faster learning rates as measured
by the number of words an expert must read. For example, in Fig-
ure 3(a), annotating based on only the first 10 words of a document
achieves a 65% accuracy after 5,000 words that is comparable to a
traditional approach requiring 25,000 words. The precise nature of
this tradeoff appears to vary by dataset.

3.3 RQ3 - Adaptive Subinstance Selection
Does allowing the learning algorithm to select the subinstance

size dynamically improve learning efficiency?
So far, we established a reference for the EER-FIX-k meth-

ods in terms of accuracy and how it translates to the budget effi-
ciency. We have found that we can improve the budget efficiency

by providing subinstances to the expert for labeling instead of full
instances.

However, the best subinstance size changes across dataset. For
further exploration of this idea, we implemented the proposed Equa-
tion 2 as QLT-γ methods (see Section 2 for details).

Our results suggest that the best value of γ depends on the bud-
get. When the active learner’s budget is severely limited, a smaller
γ, which is equivalent to many-but-noisy labels, is preferred, whereas
when the budget is large, higher quality labels can be afforded. For
instance, in Figure 3(a) QLT-γ = 0.01 performs better initially
than QLT-γ = 0.0001 however the latter improves with larger
budgets and has the same performance as QLT-γ = 0.01 in the
end. Similar results are observed in Figure 3(g) for the same meth-
ods on Reuters.

Furthermore, QLT-γ selects the size of the subinstance dynami-
cally trading off cost and improvement. Figure 3(h) and Figure 3(b)
show the average words per document for each method illustrating
the dynamic approach of QLT-γ methods. Moreover, we observed
different performances of the QLT-γ methods at different points
of the budget spending. That is, expecting big improvements for
larger budgets may not work best. For instance, Figure 3(i) shows
that that QLT-γ = 0.01 works better at early iterations whereas
QLT-γ = 0.0001 works better for later iterations. These dif-
ferences are statistically significant as shown in Figure 3(i) where
values below the 0.05 mark are statistically significant wins and
above 0.95 are statistically significant losses.
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Figure 2: Accuracy of fixed size subinstance baseline methods with MNB. On the right, expert quality of a MNB expert model tested
on k words per document

The t-test results show that the tradeoff made by a big γ values
with small budget compared to small γ for big budgets are sig-
nificant. Based on this results, we conclude big γ selects mainly
shorter subinstances which is beneficial for small budgets. On
the other hand, small γ considers longer subinstances for labeling
showing that for large budgets this works well.

Moreover, datasets that are more difficult to predict require a
lower expected percentage of improvement for each word. That
is, these datasets work better with smaller γ values where longer
subinstances are considered also. That is the case of the Aviation
dataset, considered a difficult dataset, where QLT-γ = 0.0005
performs better than QLT-γ = 0.001 and QLT-γ = 0.01. In
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Figure 3: Comparison of fixed size subinstance methods and quality-cost adaptive subinstance size methods on a MNB classifier. On
the center, the average words per document show the quality-cost methods dynamic selection of subinstance size compared to the
fixed method. On the right, statistically significant p-value comparing QLT-γ methods

contrast, for an easy dataset such Reuters QLT-γ = 0.01 works
best.

As we have shown, selecting the subinstance size dynamically is
comparable to using a fixed size. However, finding the best fixed k
value is difficult and depends on the dataset, whereas γ = 0.0005
works reasonably well across datasets. Moreover, one advantage
of the dynamic approach is that formulating the size preference in

terms of the cost of improving the model may provide a more intu-
itive way of setting model parameters.

4. RELATED WORK
Although there are commonalities among other cost sensitive ap-

proaches and our proposed method, to our knowledge this is the
first approach that allows the learning algorithm to directly influ-
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ence the annotation cost of an instance by revealing only a portion
of it.

Feature value acquisition accounts for the value of asking ques-
tions to an expert and the expected improvement based on the an-
swers such as the case of [1] and [10]. However, these formulations
differ from ours since the feature values are known in our setting,
but the expert is interrupted before the exert has the chance to fully
inspect the instance.

In scenarios where multiple experts provide noisy labels, the ac-
tive learner has to decide how many and which experts to query.
Zheng et al. [15] discuss the use of multiple experts with differ-
ent cost and accuracy. Their approach concentrates on ranking and
selecting a useful set of experts, and adjusts the cost of the ex-
pert based on the corresponding accuracy while the instances are
sampled by uncertainty. Similarly, Wallace et al. [14] allocate in-
stances to experts with different costs and expertise. Nonetheless,
the main difference with the current scenario is that each instance
is assumed to have the same cost given the expert. Furthermore, the
active learner does not have control of either the cost or the quality
of the labels and rather depends on the cost of the expert.

Some decision-theoretic approaches incorporate cost into the ac-
tive learning process by using linear cost function [7], or learning a
cost model [3]. While these frameworks work well for their particu-
lar task, other studies report mixed results [13]. Instead, we propose
an anytime active learning framework where the active learner bal-
ances cost and quality of labels by interrupting the expert labeling
task.

5. FUTURE WORK
We have provided initial empirical evidence that expert interrup-

tion can lead to more efficient learning. All in all, our current set of
results are important insight for anytime active learning algorithms
that allow the learner to control and incorporate cost awareness.
However, showing the first k words is only one way to interrupt
an expert future directions include showing an automated summary
of a document, showing selected sections of a document such as
abstract and conclusion, etc. A future user study will provide addi-
tional insight. Another potential future direction include generaliz-
ing the anytime active learning framework to other domains, such
as vision, besides text. Developing a general purpose active learn-
ing framework with anytime expert interruption is a promising new
research direction.

6. CONCLUSION
Our main goal has been to design a framework that controls and

accounts for cost and quality of training instances by means of in-
terrupting an expert at any time during annotation. This interrup-
tion mechanism allows us to control the budget spending while im-
proving the learning efficiency. We believe that this work can be
extended to eliminate some of the assumptions and provide a better
generalization to a broader range of domains.
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