
CMPS 1600 Introduction to Computer Science II – Spring 14

2/4/14

3. Homework
Programming portion (problems 1(a)-(d)) due Tuesday 2/11/14 at 11:55pm on

Blackboard.
Written portion (problems 1(e), 1(f), and 2) due Wednesday 2/12/14 at the

beginning of class.

Please zip the (Eclipse) project directory for this homework, and use the following
naming convention for the name of the project (and directory):
lastName firstName hw3. In order to receive any credit for the programming
portions, you are required to thoroughly comment your code.

1. Flood Fill (11 points)
Here we will use stacks and queues to implement the “flood fill” algorithm that is
commonly used in computer graphics. For this homework we will use a GUI
interface for the first time. You will not need to modify the GUI portion of the
code, other than to change the image being viewed. Please download the
template code that contains the following files ImageViewer.java,
FillComponent.java, and Point.java in the src folder, as well as various
image files in the inputPictures folder.

(a) (0 points) The class ImageViewer contains the main() method in which it
launches the viewing application. This class also loads the image by creating
an instance of the FillComponent class. To change the image being loaded,
you need only to change the argument to the FillComponent constructor,
by providing the filename to the image. The ImageViewer class also
monitors mouse activity and launches the method mouseClicked when the
mouse is clicked on a part of the loaded image. To get familiar with this
framework, load the shapes.png test image by providing the correct path
and run ImageViewer.

(b) (2 points) As a warmup, implement the sillyFill method in
FillComponent. Make sure to call the sillyFill method from
mouseClicked method in ImageViewer. In sillyFill, try to change the
color of a couple of pixels (it’s hard to see the color of a single pixel
changed): You can draw a “line segment” of 20 pixels: (x, y), (x + 1, y), ...,
(x + 19, y). Or you could draw a square of 20 times 20 pixels. Note that to
set a pixel in the image to a particular color, you must call the setRGB

method of the BufferedImage member variable bi from within
FillComponent. Then, you must call paintImmediately() to update the
screen image.

(c) (2 points) Modify the dynamic Stack and the dynamic Queue classes given
in class so that they both can hold generic types, and they both implement
a method called isEmpty() which returns a boolean value indicating
whether the data structure is empty. Below you will use a queue of Point
objects, Queue<Point>, or a stack of Point objects, Stack<Point>.

Flip over to back page =⇒



(d) (4 points) Implement flood fill functionality in the floodFill() method of
FillComponent. As you may know, the flood fill feature of a graphics
program “fills” a contiguous area of one color with a new color starting at a
chosen pixel. Suppose the integer RGB code for the starting pixel is
oldColor, then flood fill works its way outward from the starting pixel and
paints pixels in the newColor in a contiguous manner (in particular, it only
recolors pixels of color oldColor). More concretely, the flood fill algorithm
works as follows: First, we store the starting pixel as a Point in either a
queue or a stack of Point objects, and then we repeat the following until
our data structure is empty: We retrieve a stored Point, add all of its
neighbors with color oldColor to our data structure, and update the color
of the retrieved pixel to newColor.

Note that to test this method, you must uncomment the invocation of
sillyFill in mouseClicked in ImageViewer.

(e) (1 point) Use the test image shapes.png to ensure that your flood fill
algorithm works correctly when a stack or a queue is used. What differences
do you observe in the way the fill progresses, depending on whether a stack
of queue is used? Can you explain why? (Note that floodfill is actually a
graph traversal with pixels as vertices and edges between neighboring
vertices. Which of the flood fills reminds you more of depth-first search, and
which of breadth-first search?)

(f) (2 points) We can even solve mazes using the flood fill algorithm: Use your
flood fill implementation to decide whether each of the mazes in the
provided folder are solvable and report your findings. Use the .png files as
input to your code above; I have also provided .pdf files if you’d like to
work through these inputs by hand. Starting and ending points are
indicated by dots or the characters “S” and “E”.

2. Shape Hierarchy (9 points)
Consider the the file hw3-shapeHierarchy containing the files Tester.java,

Point.java, Shape.java, Rectangle.java, Circle.java.

(a) (6 points) Draw the state of the memory at the end of the main method in
Tester.java. Be aware of the difference between primitive types and
references. For each object, make sure to show the values of all attributes
including the attributes from the super class.

(b) (1 point) At the end of the main method in Tester.java, what does
System.out.println(rec.getID()) print? Why is it this value?

(c) (1 point) At the end of the main method in Tester.java, what does
System.out.println(c.getID()) print? (This is a trick question...)
Explain your answer.

(d) (1 point) At the end of the main method in Tester.java, what does
System.out.println(c) print? Why does the Circle c have access to the
getX() and getY() methods when they are not implemented in Circle?


